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1 Introduction
Transmitting information is costly. Yet, economic agents rely on others’ information.
In many settings, it is infeasible to compensate agents for sharing their information.
In some cases this is due to concerns that compensation may bias the information
that agents provide (e.g., Amazon prohibiting vendors from paying consumers for
reviews). In others, compensation is not a viable option (e.g., a school eliciting stu-
dents’ course reviews). In these settings, agents freely choose whether to provide the
principal with their information. Due to this tension—the principal wants informa-
tion, but lacks a way to directly incentivize agents to provide it—the principal should
reduce the cost of sharing information. One natural way to reduce costs is to ask for
less information. Reducing the number or complexity of questions that a reviewer
must answer increases the likelihood that they will complete the review (Bean and
Roszkowski 1995). However, this method of reducing costs is not without a significant
drawback: the simpler review elicits, and thus provides, less information.

This paper models and quantifies this trade-off. I show when a platform prefers
to elicit more frequent coarse information rather than scarcer detailed information.
Moreover, I characterize the optimal coarse review structure when signals are im-
precise. In my model, a platform aims to learn an payoff-relevant unknown state.
Reviewers each have a signal about the state. The platform chooses a “review sys-
tem”, which is a mapping from signals into reviews. Reviewers observe the mapping
and choose whether or not to submit their signal. This choice depends on a private
benefit from reviewing and the number of possible reviews: reviewers are less likely
to leave a review when they must decide between many possible options. Since elicit-
ing more detailed information makes reviewers less likely to submit their signal, the
platform trades off between more frequent and more detailed information.

Motivated by online reviews, I focus on the case when the number of reviewers
is large. I leverage large deviations techniques in order to characterize the rate at
which the platform learns the state, for each review system. This rate determines the
platform’s preference over review systems and depends on both the average precision
of a single review and the probability that a reviewer leaves a review. I quantify the
precision of each review system relative to the full review. This “relative information”
measures how much less frequently the full review must be submitted for the platform
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to prefer the simpler review system.
A key characteristic of online reviews is that a single review is almost uninfor-

mative: any one reviewer’s experience is a very noisy signal about the underlying
quality of the product. In this imprecise information context, I explicitly characterize
the relative information of finite review systems. This allows me to tractably compute
the optimal review system.

An important implication of my model is that the platform’s preference over
review systems is independent of its decision problem. The platform’s utility is deter-
mined by how frequently it takes a sub-optimal action. When the number of reviewers
is large, this probability decreases at the same rate regardless of the platform’s de-
cision problem. Independence across decision problems implies that the platform
can apply the same methods across products and settings without having to closely
monitor other aspects of the environment. This is especially relevant for large organi-
zations, where the information produced by review systems is used for many different
problems.

While the optimal review system is independent of the platform’s decision prob-
lem, it critically depends on reviewers’ information. In order to study how differences
in reviewers’ information affect review systems, I interpret reviewers’ signals as their
realized utility from experiencing a product of unknown quality. I apply my results to
demonstrate how the heterogeneity of reviewers’ idiosyncratic preferences impacts the
optimal binary review system. When reviewers’ preferences are heterogeneous, their
signals are more dispersed. For some products (e.g., movies), taste heterogeneity is
large, while for others (e.g., toasters), reviewers’ tastes are homogeneous.

Simple reviews lose information because they combine signals that induce differ-
ent beliefs. They lose more information when the signals they combine induce very
different beliefs. When reviewers are heterogeneous, no reviewer is representative.
This means that signal informativeness varies little. Hence, even binary review sys-
tems perform well. However, when reviewers are homogeneous, some reviewers have
very informative signals (e.g., their toaster broke). Simple reviews mix these signals
with a large mass of uninformative signals, drowning out the informative signals. As
a result, when reviewers are homogeneous, binary reviews perform worse.

Moreover, the design of the optimal binary review varies depending on the level of
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reviewers’ homogeneity. When reviewers are sufficiently heterogeneous, the optimal
binary review system is simple: the platform asks reviewers if their experience was
positive (“good”) or negative (“bad”). When reviewers are sufficiently homogeneous,
the platform uses an asymmetric review: it isolates either informative “horrible” or
“amazing” experiences (i.e., it directly asks if their toaster broke). For very homo-
geneous populations, the naive “good” or “bad” binary review performs arbitrarily
poorly relative to the full review. However, the optimal review bounds performance.
If a reviewer is 3.25 times as likely to submit a binary review as their full signal, the
optimal binary system outperforms the full review.

My framework also explains why counter-intuitive review systems persist. For
instance, platforms’ reviews are positively skewing reviews (e.g., many users default
to 5-stars on Uber and Airbnb, see Hu, Zhang, and Pavlou (2009)). I show that if
reviewers’ preferences exhibit less negative than positive heterogeneity (i.e., reviewers
agree more on what constitutes a negative experience than a positive one), it is
optimal for the platform to isolate “horrible” experiences, while grouping all other
signals. This optimal review system results in a much larger number of positive
reviews than negative reviews, even when the product is of low quality.

At a technical level, my paper contributes to the literature on comparing statistical
experiments. My characterization of the trade-off between the frequency and quality
in review systems extends existing results on how quickly different experiments lead
to learning the state. In particular, I characterize this rate when signals are imprecise.

The outline of the paper is as follows. Section 2 presents and discusses the model.
Section 3 formalizes the trade-off between review informativeness and reviewers’ fre-
quency of review and explicitly characterizes optimal review systems when infor-
mation is imprecise. Section 4 applies these results to study the impact of taste
heterogeneity on review systems. Section 5 discusses several extensions and Section 6
concludes. All proofs are included in the Appendix.

1.1 Related Literature

This paper is closely related to the literature studying learning dynamics in recom-
mendation and review systems. A large strand of this literature focuses on social
learning dynamics. Ifrach et al. (2019) studies a standard social learning setting with
binary reviews. Besbes and Scarsini (2018) looks at a similar setting, and focuses
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on when boundedly-rational agents’ use of summary statistics of reviews leads to
eventual learning. Most similar to my work is Acemoglu et al. (2022), which studies
learning rates for different review systems in the context of social learning. Although
both that study and this work are interested in learning rates, there are several major
differences. In particular, instead of focusing on the effect of social learning, I focus
on quantifying the trade-off between different review systems. Additionally, I focus
on a setting where a key difference across review systems is the rate at which reviews
are left. In the setting of Acemoglu et al. (2022) reviews are automatically submitted
and as a result detailed review systems are always preferred to simpler systems; in
my setting this is not the case.

A wider literature aims to study review systems outside of the context of standard
social learning settings. For instance, Che and Hörner (2018) studies a platform
that aims to determine the quality of a product by “pushing” it to consumers. The
signal structure in that model is perfect good news, but the platform cannot prove
the good news to consumers. Che, Kim, and Zhong (2024) studies how statistical
discrimination can arise in markets where consumers use ratings schemes to choose
between products. A different approach is taken in Garg and Johari (2019), which
uses large deviations techniques to optimally differentiate many underlying states by
controlling the proportion of positive binary reviews for each quality level. A major
difference between this work and Garg and Johari (2019) is that there, the designer
has full control over the information system, whereas in my case the designer is
constrained by the information of reviewers.

My work is also informed by the empirical literature on online reviews. For the
common five-star system, it has been well documented that, across platforms, the
distribution of submitted ratings is positively-skewed and bimodal (Chen, Yoon, and
Wu 2004; Hu, Zhang, and Pavlou 2009). Hu, Pavlou, and Zhang (2017) studies how
this distribution is due to a self-selection effect in the population of reviewers. Fradkin,
Grewal, and Holtz (2021) and Fradkin and Holtz (2023) study possible interventions
to improve the rate and quality of review submission. These works find that while
these interventions (including directly incentivizing reviews) can increase the rate at
which reviews are submitted, they do not tend to improve the overall informativeness
of the review system. This highlights the need to carefully design review systems,
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even when incentivizes are possible. For a survey of empirical work studying review
systems, see Magnani (2020). Recent empirical work has also provided alternative
reasons to use coarse review systems. For instance, Botelho et al. (2025) shows that
moving from a five-star system to a binary rating decreased racial discrimination in
an online platform that matches workers with customers. My work compliments this
literature by providing an information-theoretic argument for using simple review
systems, and suggesting that skewed reviews may be optimal.

My paper contributes also to the literature studying and applying rates of learning
to understand economic settings. This literature is broad, as learning rates have use
in many settings. For instance, Rosenberg and Vieille (2019) and Hann-Caruthers,
Martynov, and Tamuz (2018) study how quickly actions converge in a social learning
setting, and Harel et al. (2021) and Dasaratha and He (2024) study the impact of
networks on social learning.

Technically, this paper applies large deviations techniques to study rates of learn-
ing. There is a developed statistical literature that uses these to compare statistical
experiments. Chernoff (1952) provides foundational results in the context of hy-
pothesis testing. Torgersen (1981), which develops a generic ordering over different
statistical experiments for finite decision problems when the number of signals is
large, extends the ordering of Blackwell (1951). Large deviations techniques have
been applied in several cases in the economics literature. Moscarini and Smith (2002)
studies more sensitively the rate of learning, in order to determine characteristics
of the demand for information. Frick, Iijima, and Ishii (2024b) ranks different mis-
specifications by the rate at which they slow learning.1 Mu et al. (2021) develops
a generalization of the ordering of Blackwell (1951) in the context of many signals.
Finally, Fedorov, Mannino, and Zhang (2009) looks at similar trade-offs to those I
study in the context of hypothesis testing.

2 Model
A state 𝜃 ∈ Θ ≔ {𝐿, 𝐻} is drawn according to common prior 𝑞 ∈ (0, 1) that the state
is 𝐿. A platform chooses an action from finite action set 𝒜. The platform’s payoff
depends on its action and the state, 𝑢 ∶ 𝒜 × Θ → ℝ.

1Frick, Iijima, and Ishii (2023) and Frick, Iijima, and Ishii (2024a) apply similar techniques to
different settings.
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There are 𝑁 reviewers, indexed by 𝑖 ∈ {1, ..., 𝑁}. Each reviewer observes a signal
𝑆𝑖 ∈ ℝ, drawn from state-contingent density 𝑓𝜃. Signals are independent conditional
on the state. Let 𝑠𝑖 denote a generic realization of the random variable 𝑆𝑖.

The platform chooses a review system, which is a measurable function mapping
signals to reviews, 𝑟 ∶ ℝ → ℝ. For instance, the platform can ask reviewers if
their signal is above or below some threshold 𝜏: 𝑟(𝑠𝑖) = 𝟙{𝑠𝑖 > 𝜏}. If the platform
chooses review system 𝑟, and a reviewer with signal 𝑠𝑖 submits her signal, the platform
observes 𝑟(𝑠𝑖). Let ℛ𝑟 = supp(𝑟(𝑆𝑖)) denote the set of reviews possible under 𝑟.

Reviewers bear a cost to submit a review, which can be interpreted as either
cognitive or temporal. The cost is 𝑐(𝑟) = 𝐶(|ℛ𝑟|) for some increasing function
𝐶 ∶ ℕ ∪ {∞} → ℝ+: it is less costly to submit reviews with fewer choices.2 Reviewer
𝑖 also receives a payoff 𝑤𝑖 ≥ 0 from reviewing. This benefit from reviewing reflects the
expressive or altruistic desire of a reviewer to share her information and is distributed
according to random variable 𝑊𝑖. The 𝑊𝑖 are independent across reviewers and are
independent from signals. She receives utility 𝑤𝑖 − 𝑐(𝑟) from reviewing, and 0 utility
from not. It follows that reviewers use a simple threshold rule: if 𝑤𝑖 ≥ 𝑐(𝑟) reviewer
𝑖 will review, and if 𝑤𝑖 < 𝑐(𝑟) she will not. Let 𝑝𝑟 ≔ ℙ(𝑊𝑖 ≥ 𝑐(𝑟)) be the ex-ante
probability that a reviewer submits a review 𝑟.

The timing is as follows. First, the platform chooses a review system. Then,
reviewers’ private signals and benefit from reviewing are drawn, and reviewers decide
whether to submit their reviews. After this, the platform observes the submitted
reviews, updates its beliefs about the state, and takes an action to maximize its
expected utility. Explicitly, let 𝐼 ⊆ {1, ..., 𝑁} be the set of reviewers who choose to
submit a review. The platform observes 𝒮(𝐼) = ( ̃𝑟(𝑠1), ..., ̃𝑟(𝑠𝑁)), which is the vector
of submitted reviews:

̃𝑟(𝑠𝑖) =
⎧{
⎨{⎩

𝑟(𝑠𝑖) if 𝑖 ∈ 𝐼,

∅ if 𝑖 ∉ 𝐼.

After observing 𝒮(𝐼), the platform updates its belief. Let 𝜋(𝑟, 𝒮) = 𝜋(𝐿|𝑟, 𝒮(𝐼))
2Much recent work has shown that individuals have preferences against complexity (e.g., Oprea

(2020)). The number of objects under consideration is a driver of complexity (Puri 2022). Recently,
Wang and Li (2025) studied the impact of increased cognitive load on user engagement on online
platforms. That work finds that decreases in complexity lead to more user engagement.
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denote the posterior belief on the state being 𝐿 after observing reviews 𝒮, where
going forward I drop the reliance on 𝐼 for clarity. After updating its beliefs, the
platform chooses an action to maximize its expected utility given beliefs 𝜋(𝒮):

𝑢∗(𝑟, 𝒮) ≔ max
𝑎∈𝐴

{𝜋(𝑟, 𝒮)𝑢(𝑎, 𝐿) + (1 − 𝜋(𝑟, 𝒮))𝑢(𝑎, 𝐻).}

Since 𝒮 is a random vector, 𝑢∗(𝑟, 𝒮) is stochastic. Define 𝑢∗(𝑟, 𝑁) ≔ 𝔼[𝑢∗(𝑟, 𝒮)],
where this expectation is taken with respect to the 𝑆𝑖 and 𝑊𝑖. The objective of the
platform is to choose a review system to maximize 𝑢∗(𝑟, 𝑁):

max
𝑟

𝑢∗(𝑟, 𝑁).

2.1 Discussion of Model

In many contexts principals must use others’ information to make informed decisions.
My model provides a framework where asking simpler questions makes agents more
likely to agree to provide their information. Importantly, I do not take a stance on
the goal of the platform. In some settings, the platform’s goal is to simply share the
information that it collects with other agents. In other settings, the platform may
want to skew the information that it provides to future agents in order to encour-
age different behaviour. Since the model does not assume that the platform’s goals
are aligned with future agents, it sheds insight on a variety of settings, from online
retailers to general information dissemination platforms.

This highlights a major distinction between the platform in my model and pre-
vious models of review systems. For instance, the platform’s goal in designing a
rating/recommendation system in Acemoglu et al. (2022) and Che and Hörner (2018)
is to maximize the expected utility of consumers. The primary focus of these papers
is how platforms can incentivize consumers to explore a product of unknown quality.
In my work, the platform’s incentives may not be aligned directly with consumers.
I abstract from the problem of experimentation in order to directly compare review
systems. In practice, a platform can optimally collect information for itself while
considering what is optimal to show consumers: the two objectives are compatible.

A key assumption is that the probability a reviewer submits a review is indepen-
dent of a reviewer’s signal realization. This significantly simplifies the exposition of
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my results, but in practice reviewers with more extreme signals are more likely to
submit reviews (Lafky 2014; Hu, Pavlou, and Zhang 2017). I extend the model to
allow for this dependence in Section 5.1. The main insights of the baseline model
extend to that setting.

One practical benefit to using simple review systems is that they are easier to
digest and process than full-length reviews. I abstract from processing costs for the
platform to interpret submitted reviews. I also assume that there is no possibility
of miscommunication: when a reviewer submits a review, it is reported perfectly.
Abstracting from these forces allows me to focus on the key quantity-quality trade-off
between simple and detailed reviews. These forces provide an additional reason for
the platform to use simple reviews.

3 The Informational Content of Review Systems
In this section, I quantify the informational content of review systems when there are
many reviewers. I first show how a platform trades off between quality (appropri-
ately defined) and frequency, then characterize the optimal review system when the
reviewers’ signals are imprecise.

3.1 Trading-off between Quality and Frequency in Review Systems

Given a review system 𝑟, let 𝛾𝑟
𝜃 denote the distribution of reviews conditional on

state 𝜃. That is, for any measurable subset of possible reviews 𝐵 ⊆ ℛ𝑟 (where
measurability is inherited from the Borel 𝜎-algebra),

𝛾𝑟
𝜃(𝐵) ≔ ℙ𝜃(𝑟−1(𝐵)) = ∫

{𝑠∶𝑟(𝑠)∈𝐵}
𝑓𝜃(𝑠)𝑑𝑠.

The measures 𝛾𝑟
𝐿 and 𝛾𝑟

𝐻 reflect the distribution of reviews conditional on reviews
being submitted.

Review system 𝑟 is informative if 𝛾𝑟
𝐿 and 𝛾𝑟

𝐻 are different. As the difference
increases, the review systems aggregates information more quickly. The distribution
of log-likelihood ratios log ( 𝑑𝛾𝑟

𝐿
𝑑𝛾𝑟

𝐻
) encodes this difference. Conditional on 𝜃 = 𝐻, a

review is informative of the wrong state if log ( 𝑑𝛾𝑟
𝐿

𝑑𝛾𝑟
𝐻

) ≥ 0. For any 𝜆, from Markov’s
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inequality,

ℙ𝐻 (log ( 𝑑𝛾𝑟
𝐿

𝑑𝛾𝑟
𝐻

) ≥ 0) ≤ 𝔼𝐻 [𝑒𝜆 log( 𝑑𝛾𝑟
𝐿

𝑑𝛾𝑟
𝐻

)] = 𝔼𝐻 ⎡
⎣

( 𝑑𝛾𝑟
𝐿

𝑑𝛾𝑟
𝐻

)
𝜆
⎤
⎦

.

Hence, the moment generating function of log-likelihood ratios provides a bound on
the probability of reviews that are indicative of the wrong state. Since this relation-
ship holds for any 𝜆 ∈ ℝ, the minimum of the moment generating function provides
the tightest bound. When the number of reviews is large, this bound is tight.3 Hence,
the minimum of this moment generating function determines the rate at which the
platform ceases to make mistakes about the state. If this value is small, it is more
likely that the platform is correct in its belief after observing reviews.

Definition 1. The learning efficiency of review system 𝑟 is the following measure of
distance between 𝛾𝑟

𝐻 and 𝛾𝑟
𝐿:

𝜈(𝑟) ≔ 1 − min
𝜆∈[0,1]

∫
ℛ𝑟

( 𝑑𝛾𝑟
𝐿

𝑑𝛾𝑟
𝐻

)
𝜆

𝑑𝛾𝑟
𝐻 ∈ [0, 1].

The learning efficiency is a simple transformation of the minimum of the moment-
generating function of log-likelihoods. It encodes how quickly the platform learns
the state. The learning efficiency of a review system 𝑟 is larger if 𝑟 separates the
states more effectively. If 𝑑𝛾𝑟

𝐿 > 0 ⟺ 𝑑𝛾𝑟
𝐻 = 0, learning occurs immediately and

𝜈(𝑟) = 1. If reviews are uninformative (𝛾𝑟
𝐿 = 𝛾𝑟

𝐻), 𝜈(𝑟) = 0 and learning never
occurs.

The speed at which the platform learns the state controls the platform’s expected
utility when the number of reviewers is large. Consider first the case that all reviews
are submitted (𝑝𝑟 = 1). The platform’s utility is determined by the probability
that it takes a sub-optimal action. Since sub-optimal actions are caused by incorrect
beliefs, 𝜈(𝑟) determines this probability. As a result, regardless of the platform’s
utility function 𝑢, 𝜈(𝑟) determines how quickly its expected utility converges its the
full-information utility. Hence, if 𝜈(𝑟) > 𝜈(𝑟′), for large 𝑁 the platform’s expected

3For any informative review system, the expected value of the log-likelihood ratio is negative.
When the number of reviews is large, the average belief drifts towards the true state, and so it is
the probability of unlikely beliefs that binds. This is why the Kullback-Leibler divergence is not the
correct notion of difference in this case.
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utility is higher under 𝑟 than under 𝑟′.4

Decreasing the probability that reviews are submitted 𝑝𝑟 slows the learning of
the platform. Intuitively, if reviews are submitted half of the time, the platform
learns half as quickly. Theorem 1 formalizes this intuition: regardless of the decision
problem, 𝑝𝑟𝜈(𝑟) determines the utility of the platform for large 𝑁. In particular, the
platform separably trades off between the quality of reviews and the rate at which
they are submitted.

Theorem 1. Fix two review systems 𝑟, 𝑟′ such that 𝑝𝑟𝜈(𝑟) > 𝑝𝑟′𝜈(𝑟′). For any finite
action set 𝒜 and utility function 𝑢 such that the platform’s decision problem is not
trivial (argmax𝑎∈𝒜 𝑢(𝑎, 𝐿) ∩ argmax𝑎∈𝒜 𝑢(𝑎, 𝐻) = ∅), there exists an 𝑁 such that for
all 𝑁 ≥ 𝑁, such that 𝑢∗(𝑟, 𝑁) > 𝑢∗(𝑟′, 𝑁).

The proof of Theorem 1 leverages existing results in the large deviations literature
for the case that 𝑝𝑟 = 1. To utilize those results, I construct a statistical experiment
with full reporting whose learning efficiency is 𝑝𝑟𝜈(𝑟) and show that this experiment is
equivalent to the review system with stochastic reporting. The subtlety of the proof is
in the definition of 𝜈(𝑟). This measure admits the separability between reporting rates
and learning efficiency that is not present in previous applications of large deviations
techniques.

Theorem 1 implies that the platform need not tailor its review design to the
specifics of each problem because 𝑝𝑟𝜈(𝑟) is independent of the decision problem of
the platform. This is particularly relevant when the platform is designing a review
system that is to be used across a number of decision problems, as in the case of large
organizations.

In practice, review frequencies 𝑝𝑟 are simple for platforms to empirically compute
through A/B testing. This suggests a focus on the comparison of learning efficiencies
𝜈(𝑟) for different review systems 𝑟. Theorem 1 is equivalent to: if

𝜈(𝑟)
𝜈(𝑟′)

> 𝑝𝑟′

𝑝𝑟
, (1)

then there exists an 𝑁 such that for all 𝑁 ≥ 𝑁, such that 𝑢∗(𝑟, 𝑁) > 𝑢∗(𝑟′, 𝑁).
Heuristically, if 𝑟′ is submitted much less frequently than 𝑟 (𝑝𝑟′ ≪ 𝑝𝑟), then the

4This discussion summarizes a known result in the literature (Chernoff 1952; Torgersen 1981).
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platform prefers 𝑟. The ratio 𝜈(𝑟)/𝜈(𝑟′) formalizes how small 𝑝𝑟′
𝑝𝑟

must be for 𝑟 to be
favoured. Consider in particular the full review 𝑟𝑓(𝑠) = 𝑠. By setting 𝑟′ = 𝑟𝑓, the
value (1) becomes a measure of how much information review 𝑟 contains relative to
the full review 𝑟𝑓. I next define a measure of relative information in order to compare
review systems to the full review system.

Definition 2. The relative information of a review function 𝑟 is 𝜅(𝑟) ≔ 𝜈(𝑟)
𝜈(𝑟𝑓) ∈ [0, 1].

No review system can contain more information per review than the full review
system. The relative information 𝜅(𝑟) of a review system 𝑟 is a measure of how much
information is lost when coarsening from the full review to 𝑟. It characterizes how
much less frequently the full review 𝑟𝑓 must be submitted than 𝑟 for the platform
to prefer eliciting reviews of type 𝑟 to full reviews. For instance, if 𝜅(𝑟) = 0.5, then
𝑟 must be submitted twice as often as the full review for the platform to prefer 𝑟.
The relative information compares the informational content across review systems in
terms of how frequently they are reported. To directly compare two different review
systems 𝑟 and 𝑟′, the platform uses 𝜅(𝑟)/𝜅(𝑟′).

Remark 1. It is important for the separability of 𝜈(𝑟) and 𝑝𝑟 that the reporting rate
𝑝𝑟 is independent of a reviewer’s realized signal. As mentioned previously, I extend
the model to allow an individual reviewer’s reporting rate to depend on her realized
signal in Section 5.1.

Remark 2. The 𝑝𝑟 represent the stochastic rate at which signals are reported. An
alternative is to ask how many signals 𝑛𝑟 from 𝑟 “equals” 𝑛𝑟′ signals from 𝑟′. I discuss
this alternative in Section 5.2.

3.2 Threshold Systems and Imprecise Reviews

An important class of review systems is the class of threshold systems. In practice,
review systems are monotone: a more negative experience leads to a more negative
review. Threshold systems capture this behaviour.

Definition 3. A review system 𝑟 is a 𝑘-threshold review system if there exist 𝜏0 =
−∞ < 𝜏1 < ... < ∞ = 𝜏𝑘 such that

𝑟(𝑠) =
𝑘

∑
𝑖=1

𝑟𝑖𝟙 {𝑠 ∈ (𝜏𝑖−1, 𝜏𝑖]} , for distinct 𝑟𝑖 ∈ ℝ.
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I write 𝑟𝝉 for the review system defined by thresholds 𝝉 = (𝜏1, ..., 𝜏𝑘−1).

Threshold systems are induced by natural partitions of ℝ: all signals contained
in the interval (𝜏𝑖−1, 𝜏𝑖] are mapped to the same review 𝑟𝑖. In this section I show that
threshold systems are optimal for a wide class of signal structures and characterize
the optimal 𝑘-threshold system when the noise in reviewers’ signals is large.

In order to study threshold review systems, I parameterize the informativeness of
an individual review by assuming that a reviewer’s signal is given by 𝑆𝑖 = 𝜇𝜃 + 𝜎𝜖𝑖,
where

𝜇𝜃 =
⎧{
⎨{⎩

−𝜇 if 𝜃 = 𝐿,

𝜇 if 𝜃 = 𝐻.

A reviewer’s signal can be interpreted as her realized utility from a product whose
quality is dependent on the state. Under this parameterization the 𝜇𝜃 reflect the
average utility from the good. The 𝜖𝑖 reflect the idiosyncratic taste component in the
reviewers’ experience of the good: different reviewers experience the same product
differently. The parameter 𝜎 controls the noise level of the taste shocks. Let 𝑓 be the
density of 𝜖𝑖. In this setting, 𝑓𝐿 and 𝑓𝐻 are given by

𝑓𝐿(𝑠) = 1
𝜎

𝑓 (𝑠 + 𝜇
𝜎

) and 𝑓𝐻(𝑠) = 1
𝜎

𝑓 (𝑠 − 𝜇
𝜎

) .

The following is a regularity assumption for 𝑓 to guarantee that the platform’s problem
is well-behaved in this setting.

Assumption 1. The density of idiosyncratic taste shocks 𝑓 has full support and is
continuous. Moreover, 𝑓 absolutely continuous almost everywhere, as is its derivative.

Simple review systems lose information because they combine signals that induce
different beliefs. When a single review combines signals that induce very different
beliefs, information loss is large. Hence, it is always in the platform’s interest to com-
bine signals that induce similar beliefs. Threshold systems naturally combine similar
signals. When signals are ordered in terms of informativeness, then threshold systems
are optimal. Log-concavity of 𝑓 ensures that lower signals are more informative of
𝜃 = 𝐿. That is, log-concavity of 𝑓 ensures that threshold systems are optimal.
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Lemma 1. Suppose that 𝑓 is log-concave. For any 𝑘 and any degree of noise 𝜎, the
optimal review system with 𝑘 reviews is a 𝑘-threshold system.

Given the optimality of threshold systems, I now seek to characterize the optimal
threshold review system when the level of noise 𝜎 is large. In order to simplify
notation, I transform signals: 𝑠 ↦ 𝑠

𝜎 . This transformation preserves the information
at a fixed 𝜎 while normalizing the scale of signals, guaranteeing that review systems
converge. In what follows I deal exclusively with normalized signals. The distributions
of normalized signals in the two states are given by

𝑓𝐿(𝑠) = 𝑓 (𝑠 + 𝜇
𝜎

) and 𝑓𝐻(𝑠) = 𝑓 (𝑠 − 𝜇
𝜎

) .

Given a review system 𝑟, write the learning efficiency of 𝑟 when the level of noise
is 𝜎 as 𝜈𝑓(𝜎; 𝑟). Similarly, write the relative information of 𝑟 as 𝜅𝑓(𝜎; 𝑟). When it is
clear from the context, I drop the dependence on 𝑓. As the noise in individual signals
𝜎 increases, the distributions of signals in the two states become similar, limiting
the information contained in an individual review. In the limit (𝜎 → ∞), individual
reviews contain no information (lim𝜎→∞ 𝜈(𝜎; 𝑟) = 0 for all 𝑟). However, the relative
information of reviews remains well-defined. In order to characterize the optimal
review system when signals are imprecise, I explicitly characterize lim𝜎→∞ 𝜅(𝜎; 𝑟𝝉)
for threshold systems 𝑟𝝉. Slightly abusing notation, I write 𝜅(∞; 𝑟𝝉) for this limit:

𝜅(∞; 𝑟𝝉) ≔ lim
𝜎→∞

𝜅(𝜎; 𝑟𝝉) = lim
𝜎→∞

𝜈(𝜎; 𝑟𝝉)
𝜈(𝜎; 𝑟𝑓)

.

If 𝜅(∞, 𝑟𝝉) is small, then reviews from 𝑟𝝉 must be reported much more frequently
than full reviews in order for the platform to prefer 𝑟𝝉 when signals are very noisy.
On the other hand, if 𝜅(∞, 𝑟𝝉) is large, then even when reviewers are slightly more
likely to leave the simpler review 𝑟𝝉, the platform prefers eliciting coarse information.

Before I introduce the result, some intuition is useful. When noise is large, on
regions where 𝑓 is nearly constant, signals are uninformative. This is because the
difference between the two densities 𝑓𝐿 and 𝑓𝐻 is small. However, on regions where
𝑓 is very curved, even for very noisy environments, signals are very informative. If 𝑓
is very curved, the full reviews remains informative even when signals are imprecise.
In turn, a large curvature in 𝑓 depresses 𝜅(∞, 𝑟𝝉). The measure of curvature that
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captures this effect is the Fisher Information of 𝑓:5

𝐼𝑓 ≔ 𝔼 ⎡
⎣

(𝑓 ′(𝑠)
𝑓(𝑠)

)
2
⎤
⎦

.

A similar logic determines the behaviour of 𝜈(𝜎; 𝑟𝝉) when 𝜎 is large. Since the
review system is discrete, the effect of a marginal change in 𝜎 only impacts reviews
at the thresholds 𝜏1, ..., 𝜏𝑘−1. Consider a single review 𝑟𝑖 ∈ ℛ𝑟𝝉

. A marginal de-
crease in noise increases the probability that 𝑟𝑖 is reported in state 𝐿 on the order
of (𝑓(𝜏𝑖) − 𝑓(𝜏𝑖−1)). Symmetrically, the probability that 𝑟𝑖 is reported in state 𝐻
decreases by the same amount. Review 𝑟𝑖 becomes more informative as 𝜎 decreases
if the magnitude of this difference is large. This effect is magnified if 𝑟𝑖 is uncommon
because the difference in probabilities in the two states is more easily detected.

Assumption 1 guarantees that the Fisher information is well-defined.6 These
effects come together to characterize relative information when signals are noisy:

Lemma 2. Assume that 𝑓 satisfies Assumption 1. Let 𝐹 denote the cumulative
distribution function of 𝑓. Then, the relative information of 𝑟𝝉 when information is
imprecise is given by

𝜅(∞; 𝑟𝝉) = ⎛
⎝

𝑘
∑
𝑖=1

(𝑓(𝜏𝑖) − 𝑓(𝜏𝑖−1))2

𝐹(𝜏𝑖) − 𝐹(𝜏𝑖−1)
⎞
⎠

/𝐼𝑓 ∈ [0, 1],

with the convention that 𝑓(∞) = 𝑓(−∞) = 0, and 𝐹(∞) = 1, 𝐹(−∞) = 0.

A key feature of online reviews is that a single review is very noisy. Learning
from any review system is slow when reviewers’ signals are imprecise. Optimizing
the rate of learning is especially relevant in this setting since small sample effects
have a minor impact. Lemma 2 computes the performance of threshold systems
when reviewers’ signals are imprecise.7 It is proved by showing independently the

5The Fisher information appears in other settings with noisy signals. For instance, in Sadzik
and Stacchetti (2015), a larger Fisher information corresponds to easier detection of defections in a
principal-agent model with frequent, but noisy, signals.

6Absolute continuity can be replaced by assuming that 𝑓 is twice continuously differentiable
almost everywhere, with the first and second derivative of 𝑓(𝑥 + 𝜇)𝜆𝑓(𝑥 − 𝜇)1−𝜆 with respect to 𝜇
being integrable, for 𝜇 in a neighbourhood of 0.

7Lemma 2 can also be extended to non-threshold finite systems at the cost of notation, see
Theorem 3.
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rate at which 𝜈(𝜎; 𝑟𝑓) and 𝜈(𝜎; 𝑟𝝉) go to zero as a function of the noise in the taste
idiosyncrasies. Lemmas 1 and 2 together characterize the optimal review system with
𝑘 reviews.

Theorem 2. Assume that 𝑓 is log-concave and satisfies Assumption 1. The optimal
review system with 𝑘 reviews when noise is large is the 𝑘-threshold system 𝑟𝝉 with
thresholds that maximize

𝑘
∑
𝑖=1

(𝑓(𝜏𝑖) − 𝑓(𝜏𝑖−1))2

𝐹(𝜏𝑖) − 𝐹(𝜏𝑖−1)
.

When noise is large, this system is preferred to full review system 𝑟𝑓 if

∑𝑘
𝑖=1

(𝑓(𝜏𝑖)−𝑓(𝜏𝑖−1))2

𝐹(𝜏𝑖)−𝐹(𝜏𝑖−1)

𝐼𝑓
>

𝑝𝑟𝑓

𝑝𝑟𝝉

.

The full review system is preferred to 𝑟𝝉 if the reverse inequality holds.

Theorem 2 provides a straightforward objective for the platform to maximize.8

Moreover, by characterizing the optimal review system with 𝑘 reviews, Theorem 2
implicitly characterizes the optimal review system. To determine the optimal review
system, the platform first optimizes for a fixed number of reviews and then optimizes
over the number of reviews. Importantly, it shows that even when noise is large, the
choice of thresholds has important implications for the relative information of review
systems. The next section applies these results to analyze the impact of one key
characteristic of taste shocks: taste heterogeneity.

4 Application: Taste Heterogeneity and Binary Review Sys-
tems

As mentioned, the idiosyncratic shocks 𝜖𝑖 are due to the idiosyncratic preferences of
reviewers. The distribution of these preference shocks varies across different settings
and has important implications for optimal review systems. For some products like
movies, preferences are dispersed because individual taste matters to a large degree.

8The optimal 𝝉∗ depends on 𝜎. However, it is sufficient to set 𝝉∗ = lim𝜎→∞ 𝝉∗(𝜎) as
lim𝜎→∞

𝜈(𝜎;𝑟𝝉∗(𝜎))
𝜈(𝜎;𝑟𝝉∗) = 1 under Assumption 1.
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For other products like toasters, preferences are much less dispersed.9 This disper-
sion, or heterogeneity, in reviewers’ taste idiosyncrasies has important implications
for optimal review systems. In this section I use Theorem 2 to characterize optimal
binary review systems as a function of taste heterogeneity.

4.1 Symmetric Heterogeneity

In order to understand how taste heterogeneity affects review systems, I restrict
attention to a one-parameter family of distributions whose parameter controls the
degree of taste heterogeneity within the population of reviewers:

𝑓𝛼(𝑠) ∝ exp(−|𝑠|𝛼).

When preferences are dispersed, the spread of reviewers’ signals is large, regardless
of noise. This corresponds to large tails in the distribution of taste shocks. The
parameter 𝛼 controls the tails of the distribution. When 𝛼 is large, 𝑓𝛼 has small
tails, so that the population of reviewers is homogeneous. Henceforth, I refer to 𝛼 as
homogeneity.

Remark 3. For 𝛼 ≥ 1, 𝑓𝛼(𝑠) is log-concave, so threshold systems are optimal. This
family is referred to as the Generalized Normal Distributions and incorporates three
well-known distributions as special cases: 𝑓1 is the Laplace distribution (large het-
erogeneity); 𝑓2 is the Normal distribution (moderate homogeneity); and as 𝛼 → ∞,
𝑓𝛼 converges almost everywhere to the uniform distribution on (−1, 1) (perfect ho-
mogeneity).

I first show how relative information varies with homogeneity when the platform
asks reviewers if their signal is positive or negative. When tastes are very heteroge-
neous, 𝑟0 performs well: relative information is close to 1. However, as homogeneity
grows, relative information decreases to zero: information loss is unbounded.

Proposition 1. Consider relative information under the threshold 0, 𝜅𝑓𝛼
(∞; 𝑟0):

9The classification of “search” and “experience” goods provides a possible way to distinguish be-
tween goods with low and high taste dispersion (heterogeneity). First introduced in Nelson (1970),
search goods’ attributes are well-defined and easily found, whereas experience goods must be expe-
rienced before an opinion can be formed (see also Magnani (2020) for a discussion). Search goods,
because of their well-defined attributes, are likely to be more homogeneous—“does the good per-
form as it should?”—while experience goods are likely to be more heterogeneous since individual
experience important.
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(i) When reviewers are very heterogeneous, the symmetric binary review contains
the same information as the full review: 𝜅𝑓1

(∞; 𝑟0) = 1; and

(ii) As reviewer taste homogeneity increases, 𝑟0 performs worse relative to the full
review: 𝜅𝑓𝛼

(∞; 𝑟0) is decreasing in 𝛼 ≥ 1. Moreover, 𝑟0 performs arbitrarily
poorly when reviewers are sufficiently homogeneous: lim𝛼→∞ 𝜅𝑓𝛼

(∞; 𝑟0) = 0.

The relative information of the naive binary review 𝑟0 is decreasing in taste ho-
mogeneity. That is, as reviewer taste homogeneity increases, reviewers must submit
binary reviewers more frequently for 𝑟0 to continue to be preferred to the full review.
The intuition for this result is as follows. When reviewers are homogeneous, there
is small dispersion in signals. This means that there are both many uninformative
signals and some very informative signals.10 The symmetric review 𝑟0 mixes very in-
formative signals with very uninformative signals, limiting the information contained
in either review.

This discussion highlights the central tension in choosing an asymmetric binary
review: extracting more information from one review while extracting less from the
other. If the platform uses review system 𝑟𝜏 for 𝜏 > 0 instead of 𝑟0, then (i) the
negative review contains a mass of positive signals; but (ii) the positive review contains
a smaller mass of uninformative signals. Effect (i) makes the review system less
informative, while (ii) improves precision. If the second effect outweighs the first,
then it is optimal to use an asymmetric review.

When reviewers’ tastes are sufficiently heterogeneous, the cost of decreasing the
informativeness of one review is larger than the benefit from making the other review
more informative. However, when reviewer homogeneity is large, enough information
can be extracted from the informative review to outweigh the cost: the optimal
binary review is asymmetric. Importantly, the optimal threshold limits learning loss
under the binary review: relative information is bounded below by 1/3.25. That
is, if reviewers are 3.25 times as likely to submit a binary review than the fully
detailed review, the optimal binary system is preferred, regardless of the degree of
homogeneity. This result, together with Proposition 1, highlights the importance
of the analysis: the design of the binary review has important implications for its
performance.

10I.e., the variance of induced posteriors is large.
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In what follows, let 𝜏∗(𝛼) be the non-negative optimal threshold. Since 𝑓𝛼 is sym-
metric, there is also a non-positive maximizer −𝜏∗(𝛼). In the statement of Proposi-
tion 2, all statements are written in terms of the non-negative optimal threshold for
clarity. Comparable statements hold for the non-positive optimal threshold.11

Proposition 2. For 𝛼 ≥ 1, there is a unique optimal binary review system with
non-negative threshold 𝜏∗(𝛼). It has the following properties:

(i) The symmetric binary review is the optimal binary review if and only if reviewers
are sufficiently heterogeneous: if 𝛼 ≤ 2, 𝜏∗(𝛼) = 0, while if 𝛼 > 2, 𝜏∗(𝛼) ≠ 0;

(ii) When reviewers are sufficiently homogeneous, the optimal binary review is very
asymmetric: lim𝛼→∞ 𝜏∗(𝛼) = 1; and

(iii) The relative information of the optimal binary review is bounded: 𝜅𝑓𝛼
(∞; 𝑟𝜏∗(𝛼)) >

1/3.25 for all 𝛼.

The normal distribution corresponds to the degree of taste homogeneity at which
the optimal binary review system ceases to be symmetric. When the degree of ho-
mogeneity is large the platform optimally asks individuals either (i) whether they
had a “very good” experience or an experience that was “not exceptional” (positive
𝜏∗), or (ii) whether they had a “very bad” experience or an experience that was “not
horrible” (negative 𝜏∗).

Proposition 3 shows comparative statics for 𝜏∗(𝛼): both 𝜏∗(𝛼) and 𝐹𝛼(𝜏∗(𝛼)) are
increasing in 𝛼. Importantly, this means that the probability of the more common
review increases in homogeneity, regardless of the state. Consider 𝑟𝜏∗(𝛼), the optimal
binary review with a positive threshold, for large 𝛼. Even when 𝜃 = 𝐻, the majority
of reviews are negative. The share of negative reviews increases to 1 as 𝛼 → ∞. This
suggests that review systems where the vast majority of reviewers leave the same
review are optimal when reviewers are sufficiently homogeneous. These results are
summarized in Fig. 1. In particular, even for relatively small degrees of homogeneity,
the optimal review system is very asymmetric.

Proposition 3. Consider the non-negative optimal threshold 𝜏∗(𝛼). It has the fol-
lowing properties:

11The next section shows that introducing (arbitrarily small) asymmetry in 𝑓𝛼 breaks this mul-
tiplicity.
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(i) The optimal threshold is increasing in the homogeneity of the population: 𝜏∗(𝛼)
is strictly increasing in 𝛼 for 𝛼 ≥ 2; and

(ii) Optimal asymmetry is increasing in the homogeneity of the population: 𝐹𝛼(𝜏∗(𝛼))
is strictly increasing in 𝛼 for 𝛼 ≥ 2, with lim𝛼→∞ 𝐹𝛼(𝜏∗(𝛼)) = 1.

(a) As homogeneity increases, the opti-
mal review becomes more asymmetric.

(b) As homogeneity increases, the prob-
ability of the more common review in-
creases to 1.

Figure 1: Properties of the optimal binary review system, for different degrees of
homogeneity 𝛼.

4.2 Asymmetric Heterogeneity

The multiplicity of optimal reviews disappears when asymmetry in positive and nega-
tive taste homogeneity is introduced. When heterogeneity is asymmetric, the optimal
binary review system’s threshold is on the side of the distribution that features larger
taste homogeneity. Let 𝛼∗ be the value for which 𝑓𝛼(0) is maximized.12

Proposition 4. Let

𝑓𝛼𝐿,𝛼𝐻
(𝑠) ∝ 𝟙{𝑠 ≥ 0}𝑒−|𝑠|𝛼𝐻 + 𝟙{𝑠 < 0}𝑒−|𝑠|𝛼𝐿 ,

with 𝛼∗ ≤ 𝛼𝐿, 𝛼𝐻. If 𝛼𝐿 > 𝛼𝐻, then the optimal threshold 𝜏∗(𝛼𝐿, 𝛼𝐻) is negative. If
𝛼𝐻 > 𝛼𝐿, then the optimal threshold is positive.

Fig. 2 highlights the intuition behind Proposition 4. Consider a positive threshold
(dotted line). At the negative threshold that yields the same value of the density

12It is easy to verify that 𝛼∗ ≈ 2.166.
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(dashed line), there is less mass to the left of that threshold than there is to the right
of the positive candidate. This logic applies to any feasible positive candidate, so
that the optimal threshold is negative.13

Figure 2: Asymmetric distribution of taste shocks 𝑓𝛼𝐿,𝛼𝐻
, for 𝛼𝐿 = 10, 𝛼𝐻 = 2.5.

Apart from breaking multiplicity, this is an important setting because asymmetric
taste homogeneity is common. For instance, consider ride-sharing services. In this
setting, reviewers agree on bad experiences: no reviewer wants to be late or get into an
accident. On the other hand, consumers disagree on what makes a good experience:
some (not all) people like having a discussion with their driver; some (not all) like
music to be played.14 Proposition 4 justifies why many platforms exhibit many more
positive reviews than negative reviews (Hu, Zhang, and Pavlou 2009). If reviewers
agree on negative experiences more than positive experiences, the platform should
isolate extremely negative experiences. Summarizing in some settings the optimal
review is positively skewed, even when the product is of low quality.

4.3 Beyond Binary Reviews

Similar qualitative results apply to optimal finite review systems with 𝑘 components,
where 𝑘 > 2. Fig. 3 exhibits the optimal three-bin system for varying degrees of
homogeneity 𝛼. In particular, the optimal asymmetry of the system is increasing
in the degree of homogeneity. An important difference from the binary system is
that both extreme positive and negative signals can be isolated. When homogeneity
is large, the platform “throws out” many signals. The middle review provides no

13An asymmetry is asymmetry in the variance of positive and negative taste shocks. If the variance
of signals for positive taste shocks was larger than for negative taste shocks, then by a similar logic
the optimal threshold is negative.

14For search goods, larger negative homogeneity is expected: most reviewers are in agreement
about whether a good doesn’t meet expectations, but may disagree about how it over-performs.
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information to the platform (since it is equally likely in each state). Its presence is
important, however, because it allows the platform to skim uninformative reviews in
order to isolate very informative positive and negative signals.

(a) The optimal thresholds become more
extreme as homogeneity grows.

(b) The probability of the highest and
lowest review shrinks as homogeneity
grows.

Figure 3: Properties of the optimal three-bin review system, for different degrees of
homogeneity 𝛼.

5 Extensions
5.1 Signal-Dependent Reporting Rates

In practice, a reviewer’s experience is likely to affect the probability that she submits
a review. For example, a reviewer with an extreme signal is more likely to leave a
review.15 In some contexts reviewers may report positive and negative experiences
at different rates. In this section I show how to incorporate signal-dependent report-
ing rates into my framework. While the qualitative insights from previous sections
remain, several new forces emerge.

Suppose now, in addition to the cost of submitting the review 𝑐(𝑟), there is a bene-
fit 𝑏(𝑠) of reporting signal 𝑠 (with 𝑏(𝑠) ≤ 𝑐(𝑟)). This reflects an expressive component
to submitting reviews (Lafky 2014). A reviewer now receives utility 𝑤𝑖 + 𝑏(𝑠) − 𝑐(𝑟)
from submitting review 𝑟 when her signal is 𝑠. In this setting, the probability that
a reviewer leaves a review is a function of both the review system and her signal:
𝑝(𝑟, 𝑠) ≔ ℙ(𝑊𝑖 ≥ 𝑐(𝑟) − 𝑏(𝑠)).

15For instance, Lafky (2014) suggests that individuals are more likely to report extreme experi-
ences than moderate experiences because they derive a benefit from informing others, and extreme
experiences are more informative.

21



As before, the difference in the distribution of reviews across the two states de-
termines the review system’s performance. Define the distribution 𝛾(𝑝,𝑟)

𝐿 of reviews
in state 𝐿 (implicitly dependent on 𝜎) as

𝛾(𝑝,𝑟)
𝐿 (𝐵) ≔ ∫

{𝑠∶𝑟(𝑠)∈𝐵}
𝑝(𝑟, 𝑠)𝑓 (𝑠 + 𝜇

𝜎
) 𝑑𝑠.

Similarly define the distribution 𝛾(𝑝,𝑟)
𝐻 of reviews in state 𝐻. As before, these measures

determine the rate at which the platform learns the state. Importantly, 𝑝(𝑟, 𝑠) is no
longer separable from these measures. Define 𝜌(𝜎; 𝑟, 𝑝) as the analog of 𝑝𝑟𝜈(𝜎; 𝑟):

𝜌(𝜎; 𝑟, 𝑝) ≔ 1 − min
𝜆∈[0,1]

⎡
⎣

∫
ℛ𝑟

⎛
⎝

𝑑𝛾(𝑝,𝑟)
𝐿

𝑑𝛾(𝑝,𝑟)
𝐻

⎞
⎠

𝜆

𝑑𝛾(𝑝,𝑟)
𝐻 + (𝛾(1−𝑝,𝑟)

𝐿 (ℝ))
𝜆

(𝛾(1−𝑝,𝑟)
𝐻 (ℝ))

1−𝜆
⎤
⎦

.

There are two significant differences between 𝜌 and 𝑝𝑟𝜈(𝑟). First, different signals
receive different weight because 𝑝(𝑟, ⋅) varies with the signal realization. Second, “null
reviews” (reviews that are not submitted) may now be informative of the state. The
probability that a signal is not submitted when the state is 𝐿 is 𝛾(1−𝑝,𝑟)

𝐿 (ℝ). If this
is larger than 𝛾(1−𝑝,𝑟)

𝐻 (ℝ), then a null signal is indicative of state 𝐿. Despite these
changes, Theorem 1 generalizes to this setting, where 𝜌(𝜎; 𝑟, 𝑝) replaces 𝑝𝑟𝜈(𝜎; 𝑟).

Lemma 3. Fix two review systems 𝑟, 𝑟′ such that 𝜌(𝜎; 𝑟, 𝑝) > 𝜌(𝜎; 𝑟′, 𝑝). For any
finite action set 𝒜 and utility function 𝑢 such that the platform’s decision problem
is not trivial (argmax𝑎∈𝒜 𝑢(𝑎, 𝐿) ∩ argmax𝑎∈𝒜 𝑢(𝑎, 𝐻) = ∅), there exists an 𝑁 such
that for all 𝑁 ≥ 𝑁, such that 𝑢∗(𝑟, 𝑁) > 𝑢∗(𝑟′, 𝑁).

Without additional structure on the probabilities of review 𝑝, little more can be
said about the comparison between review systems. With arbitrary reporting rates 𝑝,
the underlying distribution of signals that different review systems draw from differ.
This means that anything can happen. In order to gain structure, I restrict attention
to reporting rates 𝑝 that are separable between the impact of the review function and
the signal realization.

Definition 4. The propensity to review function 𝑝(𝑟, 𝑠) is said to be separable if
𝑝(𝑟, 𝑠) = 𝑝𝑟𝑞(𝑠) for some functions 𝑝 ∶ ℕ ∪ {∞} → (0, 1] and 𝑞 ∶ ℝ → [0, 1].
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If the willingness to review 𝑊𝑖 are distributed exponentially, then the resulting
propensity to review is separable (following a normalization so that 𝑞(𝑠) ≤ 1).16 To
understand the new forces that emerge when reporting rates are signal-dependent,
I now develop an analogue of Theorem 2 in the case that propensities to review
are separable. Before I present the result, additional notation is needed. Fix the
distribution of taste heterogeneity 𝑓 and the signal reporting rate 𝑞. Define the
functional 𝐸 as the integral of a function 𝑔 with respect to the measure whose density
is given by 𝑞 ⋅ 𝑓:

𝐸(𝑔) ≔ ∫
∞

−∞
𝑔(𝑠)𝑞(𝑠)𝑓(𝑠)𝑑𝑠.

Note that 𝐸 is not an expectation because 𝑞 ⋅ 𝑓 is not probability distribution (unless
𝑞(𝑠) = 1 almost everywhere). Similarly, given a review system 𝑟, for each review
̃𝑟 ∈ ℛ𝑟, define

𝐸(𝑔; ̃𝑟) ≔ ∫
∞

−∞
𝑔(𝑠)𝟙{𝑟(𝑠) ∈ ̃𝑟}𝑞(𝑠)𝑓(𝑠)𝑑𝑠

the integral with respect to the restricted measure. With this notation, Lemma 2
generalizes to the following result.

Theorem 3. Assume that 𝑓 is log-concave and satisfies Assumption 1 and 𝑝(𝑟, 𝑠) =
𝑝𝑟𝑞(𝑠). Let ℓ𝑓 ≔ 𝑓′

𝑓 denote the linear score of 𝑓. The generalization of relative
learning for a finite review system 𝑟 is

𝑝𝑟𝑓

𝑝𝑟
⋅ lim

𝜎→∞

𝜌(𝜎; 𝑟, 𝑝𝑟 ⋅ 𝑞)
𝜌(𝜎; 𝑟𝑓, 𝑝𝑟𝑓

⋅ 𝑞)
=

∑ ̃𝑟∈ℛ𝑟

𝐸(ℓ𝑓; ̃𝑟)2

𝐸(1; ̃𝑟) + 𝑝𝑟𝐸(ℓ𝑓)2

1−𝑝𝑟𝐸(1)

𝐸 (ℓ2
𝑓) +

𝑝𝑟𝑓
𝐸(ℓ𝑓)2

1−𝑝𝑟𝑓
𝐸(1)

∈ [0, 1]. (2)

The optimal 𝑘 component review is a 𝑘-threshold system whose thresholds maximize
(2).

The left-hand side of (2) is the generalization of 𝜅(∞, 𝑟). In the case that 𝑞 ≡ 1,
Theorem 3 generalizes Lemma 2 to non-threshold finite reviews. The sum in the

16Importantly, 𝑞 depends on the reviewer’s signal and not their taste shock 𝜖𝑖. This latter case
would simply reduce to the previous setting.
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numerator and the first term of the denominator are the direct generalizations of the
numerator and denominator from Lemma 2.

The impact of null reviews is the second term of the numerator and denominator.
Importantly, the information contained in null reviews depends on the rate at which
a review is submitted. To illustrate, consider Fig. 4. The top two panels show the
distribution of submitted reviews. As 𝑝𝑟 increases, these distributions are scaled.
However, for null reviews (shown in the bottom panels), this is not the case. As fewer
reviewers report (𝑝𝑟 → 0), the mass of null reviews becomes more similar in the two
states, since 1 − 𝑞(𝑠)𝑝𝑟 approaches 1 uniformly (drowning out asymmetry due to 𝑞).
Hence, null reviews become less informative as 𝑝𝑟 decreases. In the case that 𝑝𝑟 ≈ 0,
null reviews are uninformative. In this setting, signal-independent reporting rates
approximate the more general model apart from a change in measure.

𝑓𝜃

(1 − 𝑝𝑟𝑞) ⋅ 𝑓𝜃

𝑝𝑟𝑞 ⋅ 𝑓𝜃

𝑝𝑟 = 0.5 𝑝𝑟 = 1

Figure 4: Distributions of reviews for 𝑓𝜃(𝑠) normal, with 𝜇
𝜎 = 0.25, and 𝑞(𝑠) =

1 − 1
1+2(𝑥2+4𝟙{𝑥≤0}𝑥2) and for 𝑝𝑟 = 0.5 (left), 1 (right). The top panels show the

distribution of submitted reviews, and the bottom panels show the distribution of
null reviews.

5.2 Comparing Numbers of Reviews versus Probability of Reviewing

An alternative to comparing rates of reporting is to directly compare 𝑛𝑟 reviews from
system 𝑟 with 𝑛𝑟′ reviews from system 𝑟′.17 This comparison falls to consumers who
must decide between multiple types of reviews on a website: should they read written

17This is the traditional approach taken in the literature (Chernoff 1952; Moscarini and Smith
2002; Mu et al. 2021).
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reviews, or instead consider the 5-star rating? The consumer’s preferences and the
platform’s preferences over review systems are related, they are not identical.

Consider two different review systems, 𝑟 and 𝑟′, with 𝜈(𝑟) > 𝜈(𝑟′) and 𝑝𝑟 < 𝑝𝑟′ .
The platform must choose a review system before information is collected. This
means that it must consider the possibility of not receiving any (or receiving very
few) reviews. This happens with higher probability under review system 𝑟. However,
on average, there are many reviews of type 𝑟 submitted. For a consumer deciding
between 𝑁𝑝𝑟 reviews from system 𝑟 and 𝑁𝑝𝑟′ reviews from system 𝑟′, the risk of
seeing few reviews is not a concern. This means that varying 𝑝𝑟 has a larger effect
on the platform’s preferences over review systems than it does on the consumer’s.
When reviewers’ information is imprecise, this difference disappears and the two
orders agree. Appendix B formalizes the model and the differences, and shows these
relationships.

5.3 Multi-Dimensional Information

In practice, even simple products like toasters have multiple dimensions of quality.
While my results do not directly speak to this setting, they do suggest a naive ap-
proach. It is always possible for the platform to isolate different dimensions of product
quality, and ask a simple question along each dimension. My results suggest that,
because of the performance of binary systems in the one-dimensional case, even this
naive approach performs well. An interesting question for future work is when it is op-
timal to isolate dimensions in this way, and when it is better to combine information
across dimensions.

5.4 More than Two States

When there are more than two states of the world, my results can be extended in
the standard way. First, partition states by the optimal action in that state. Then,
the rate of learning for the platform is determined by the two states across elements
of the partition that are hardest to distinguish. In the case of binary action environ-
ments (fire/keep on, recommend/do not recommend, or when flagging a problem),
the platform’s problem becomes one of differentiating two states, mirroring my spec-
ification. An important difference is that the optimal review system in this setting
depends on the platform’s decision problem, because its problem determines which
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two states are must be distinguished. In settings with a richer action space, more care
must be taken. It is possible that a review system that distinguishes two elements of
the partition well might poorly distinguishes a third. In this case, more complicated
review systems may be preferred.

6 Conclusion
My results show how a principal optimally designs review systems if it has complete
control over how reviewers submit reviews. I abstract from the implementation of
review systems throughout my analysis. In practice, controlling how reviewers leave
reviews is difficult. Common review systems, like 5-star reviews, are likely difficult to
design because of reviewers’ extensive experience with similar systems: reviewers are
likely to default to their own, private, thresholds.18 Binary systems, because of their
simplicity, are easier to carefully design. In practice, many different binary reviews
are used—“did you like the product?”, “would you buy the product again?”, “would
you recommend the product to a friend/colleague?”—all of which induce different
thresholds. If implementation of complex review systems is difficult, then there is an
additional benefit to using simple review systems.

Whenever a principal elicits information from agents, it must consider the trade-off
between the quality of information that it elicits and the burden it places on agents.
If the principal asks for too much information, agents may choose to opt-out and not
provide any information. My model characterizes this trade-off. I show that learning
is sensitive to the design of review systems and that the principal must carefully
consider reviewers’ information. When the platform optimally elicits information even
simple review systems perform well. However, the optimal review system depends on
the information of reviews. If reviewers are sufficiently heterogeneous, the symmetric
“good” or “bad” review systems performs well. On the other hand, if reviewers’
tastes are homogeneous, this naive binary review system performs poorly. Instead,
the optimal binary review system is asymmetric: the platform isolates informative
signals in one review at the cost of the other review.

18This is a major mechanism driving the results of Botelho et al. (2025).
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A Proofs
All proofs for results in the main text are proved in this appendix.

A.1 Proofs for Section 3

In this appendix I provide the proof of the major results from Section 3. Before I
prove the main result, I first state the following result from Torgersen (1981):

Theorem (Torgersen 1981). Suppose that reviews are always submitted (i.e., 𝑝𝑟 =
1 for all review systems 𝑟). Fix two review systems 𝑟, 𝑟′ with 𝜈(𝑟) > 𝜈(𝑟′) and a
decision problem for the platform. There exists an 𝑁 such that for all 𝑁 ≥ 𝑁, such
that 𝑢∗(𝑟, 𝑁) > 𝑢∗(𝑟′, 𝑁).

Proof of Theorem 1. For ease of notation, write 𝜈𝑟 ≔ 𝜈(𝑟) to denote the learning
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efficiency of a review 𝑟. The pair (𝑝𝑟, 𝑟) can be thought of as defining a statistical
experiment over the two states of the world.

In order to apply the above theorem to this setting, we must translate (𝑝𝑟, 𝑟) into
a statistical experiment without stochastic reporting, and show that its learning effi-
ciency is given by 𝑝𝑟𝜈𝑟, where 𝜈𝑟 is the learning efficiency of the statistical experiment
(1, 𝑟).

Let 𝛾(𝑝𝑟,𝑟)
𝐿 be the measure defined over ℛ𝑟 ∪ {∅} representing the distribution of

reviews in state 𝐿. That is,

𝛾(𝑝𝑟,𝑟)
𝐿 (𝐵) ≔𝑝𝑟 ⋅ ∫

{𝑠∶𝑟(𝑠)∈𝐵}
𝑓𝐿(𝑠)𝑑𝑠 + (1 − 𝑝𝑟) ⋅ 𝟙{∅ ∈ 𝐵}

=𝑝𝑟 ⋅ 𝛾𝑟
𝐿(𝐵 ∩ ℛ𝑟) + (1 − 𝑝𝑟) ⋅ 𝟙{∅ ∈ 𝐵}.

The only difference between this measure and the measure 𝛾𝑟
𝐿 is the weight 1 − 𝑝𝑟

placed on {∅}, which represents a null review (a reviewer choosing to not submit a
review). Similarly,

𝛾(𝑝𝑟,𝑟)
𝐻 (𝐵) ≔𝑝𝑟 ⋅ 𝛾𝑟

𝐻(𝐵 ∩ ℛ𝑟) + (1 − 𝑝𝑟) ⋅ 𝟙{∅ ∈ 𝐵}.

Notice then, for a given value of 𝜆, it is the case that

∫
ℛ𝑟∪{∅}

(𝑑𝛾(𝑝𝑟,𝑟)
𝐿 )

𝜆
(𝑑𝛾(𝑝𝑟,𝑟)

𝐻 )
1−𝜆

= ∫
ℛ𝑟

(𝑝𝑟 ⋅ 𝑑𝛾𝑟
𝐿)𝜆 (𝑝𝑟 ⋅ 𝑑𝛾𝑟

𝐻)1−𝜆 + (1 − 𝑝𝑟)

=𝑝𝑟 ∫
ℛ𝑟

(𝑑𝛾𝑟
𝐿)𝜆 (𝑑𝛾𝑟

𝐻)1−𝜆 + 1 − 𝑝𝑟.

Hence,

min
𝜆∈[0,1]

∫
ℛ𝑟∪{∅}

(𝑑𝛾(𝑝𝑟,𝑟)
𝐿 )

𝜆
(𝑑𝛾(𝑝𝑟,𝑟)

𝐻 )
1−𝜆

= 1 − 𝑝𝑟 ⎛
⎝

1 − min
𝜆∈[0,1]

∫
ℛ𝑟

(𝑑𝛾𝑟
𝐿)𝜆 (𝑑𝛾𝑟

𝐻)1−𝜆⎞
⎠

.

Concluding,

𝜈(𝑝𝑟,𝑟) = 1 − min
𝜆∈[0,1]

∫
ℛ𝑟∪{∅}

(𝑑𝛾(𝑝𝑟,𝑟)
𝐿 )

𝜆
(𝑑𝛾(𝑝𝑟,𝑟)

𝐻 )
1−𝜆

= 𝑝𝑟 ⋅ 𝜈𝑟,

which is what we set out to show.
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The proof of Lemma 1 requires additional mechanics. I first prove a similar result
in posterior space, and then show that the result applies in signal space when 𝑓 is
log-concave.

Let 𝑓(𝑠) = 1
2 (𝑓𝐿(𝑠) + 𝑓𝐻(𝑠)) be the ex-ante distribution of signals under a sym-

metric prior. Moreover, let 𝜋(𝑠) ≔ 𝑓𝐿(𝑠)
𝑓𝐿(𝑠)+𝑓𝐻(𝑠) be the posterior belief placed on state

𝐿 after observing signal 𝑠 when there is a symmetric prior. A straightforward compu-
tation shows that the learning efficiency under the full review system is an expectation
that depends on the posterior and the ex ante distribution:

𝜈(𝑟𝑓) = 1 − min
𝜆∈[0,1]

2 ∫ 𝜋(𝑠)𝜆(1 − 𝜋(𝑠))1−𝜆𝑓(𝑠)𝑑𝑠.

Associated with each signal 𝑠 is a unique posterior 𝜋. Let 𝛾𝜋 be the measure on
[0, 1] that reflects the distribution of posteriors that is associated with 𝑓.19 That is,

𝛾𝜋(𝐵) ≔ 1
2

∫
{𝑠∶𝜋(𝑠)∈𝐵}

𝑓𝐿(𝑠) + 𝑓𝐻(𝑠)𝑑𝑠.

The learning efficiency of the full review system can then be written as

𝜈(𝑟𝑓) = 1 − min
𝜆∈[0,1]

2 ∫ 𝜋𝜆(1 − 𝜋)1−𝜆𝛾𝜋(𝑑𝜋).

This structure is preserved when review systems are introduced, as long as the
review system treats posteriors consistently. That is, as long as it treats two signals
that induce the same posterior the same. To this end, call a review system 𝑟 consistent
if, for almost all signals 𝑠, 𝑠′ ∈ ℝ such that 𝜋(𝑠) = 𝜋(𝑠′), 𝑟(𝑠) = 𝑟(𝑠′). Notice that
if 𝛾𝜋 has no atoms, then it is without loss to restrict attention to consistent review
systems.

The representation of 𝜈(𝑟𝑓) in terms of the distribution of posteriors extends to
arbitrary consistent review systems. The difference is that instead of the function
𝜋𝜆(1 − 𝜋)1−𝜆 being evaluated at each 𝜋, the review system 𝑟 groups all posteriors
that are mapped to the same review.

19Although 𝛾𝜋 is the measure of posteriors on state 𝐿, I use 𝛾𝜋 to indicate that this is the ex-ante
measure, and not the measure conditional on state 𝐿.
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Lemma A.1. Let 𝑟 be any consistent review system. Then,

𝜈(𝑟) = 1 − min
𝜆∈[0,1]

2 ∫ (𝔼𝛾𝜋
[ ̃𝜋|𝑟( ̃𝜋) = 𝑟(𝜋)])

𝜆
(1 − 𝔼𝛾𝜋

[ ̃𝜋|𝑟( ̃𝜋) = 𝑟(𝜋)])
1−𝜆

𝛾𝜋(𝑑𝜋).

Proof. I show this in the case that 𝑟 is a finite review system, and when 𝛾𝑟 has
full support on ℛ𝑟, since the notation is easier in this case. First, observe that
𝑓𝐻(𝑠) = 𝑓𝐿(𝑠)1−𝜋(𝑠)

𝜋(𝑠) . This means that 𝜈(𝑟) can be written as as

1 − 𝜈(𝑟) = min
𝜆∈[0,1]

∑
̃𝑟∈ℛ𝑟

ℙ𝐿(𝑟−1( ̃𝑟))𝜆ℙ𝐻(𝑟−1( ̃𝑟))1−𝜆

= min
𝜆∈[0,1]

∑
̃𝑟∈ℛ𝑟

⎛
⎝

∫
{𝑠∈𝑟−1( ̃𝑟)}

𝜋(𝑠)
(1 − 𝜋(𝑠))

𝑓𝐻(𝑠)𝑑𝑠⎞
⎠

𝜆

⋅ ⎛
⎝

∫
{𝑠∈𝑟−1( ̃𝑟)}

𝑓𝐻(𝑠)𝑑𝑠⎞
⎠

1−𝜆

If 𝜋(𝑠) is injective, then by straightforward computation it is easy to show that
1

1−𝜋𝑓𝐻(𝑠) = 2𝛾𝜋(𝑑𝜋(𝑠)) and 𝑓𝐻(𝑠) = 2(1 − 𝜋(𝑠))𝛾𝜋(𝑑𝜋(𝑠)). In general, as long as 𝑟
is consistent, even if 𝜋(𝑠) is not injective, then for each 𝜆

∑
̃𝑟∈ℛ𝑟

ℙ𝐿(𝑟−1( ̃𝑟))𝜆ℙ𝐻(𝑟−1( ̃𝑟))1−𝜆

= ∑
̃𝑟∈ℛ𝑟

2 ⎛
⎝

∫
�̃�∈𝑟−1( ̃𝑟)

̃𝜋𝛾𝜋(𝑑 ̃𝜋)⎞
⎠

𝜆

⋅ ⎛
⎝

∫
�̃�∈𝑟−1( ̃𝑟)

(1 − ̃𝜋)𝛾𝜋(𝑑 ̃𝜋)⎞
⎠

1−𝜆

= ∑
̃𝑟∈ℛ𝑟

2
(∫

�̃�∈𝑟−1( ̃𝑟)
̃𝜋𝛾𝜋(𝑑 ̃𝜋))

𝜆
⋅ (∫

�̃�∈𝑟−1( ̃𝑟)
(1 − ̃𝜋)𝛾𝜋(𝑑 ̃𝜋))

1−𝜆

∫
�̃�∈𝑟−1( ̃𝑟)

𝛾𝜋(𝑑 ̃𝜋)
∫

�̃�∈𝑟−1( ̃𝑟)
𝛾𝜋(𝑑 ̃𝜋)

= ∑
̃𝑟∈ℛ𝑟

2 (𝔼𝛾𝜋
[𝜋|𝑟(𝜋) = ̃𝑟])

𝜆
(1 − 𝔼𝛾𝜋

[𝜋|𝑟(𝜋) = ̃𝑟])
1−𝜆

∫
�̃�∈𝑟−1( ̃𝑟)

𝛾𝜋(𝑑 ̃𝜋)

From here, the conclusion is reached by minimizing over 𝜆.

Notice that here the measure with respect to which the integral is taken is simply
𝛾𝜋(𝑑𝜋), which is independent of 𝑟. This means that, fixing 𝜆, the loss in information
is from the pre-evaluation of 2𝜋𝜆(1−𝜋)1−𝜆. Since, for any 𝜆, this function is concave,
information loss is exactly due to Jensen’s inequality.

If 𝑟 is a consistent review system with 𝑘 components, it is a partition of the space
[0, 1] into 𝑘 sections. Let {Π1, ..., Π𝑘} be the partition of the interval. Then 𝜈(𝑟) can
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be rewritten as

𝜈(𝑟) = 1 − min
𝜆∈[0,1]

2
𝑘

∑
𝑖=1

(𝔼𝛾𝜋
[𝜋|𝜋 ∈ Π𝑖])

𝜆
(1 − 𝔼𝛾𝜋

[𝜋|𝜋 ∈ Π𝑖])
1−𝜆

𝛾𝜋 (Π𝑖) .

In order to show that threshold rules are optimal in signal space, I show that they
are optimal in threshold space.

Definition A.1. A (posterior) review system 𝑟 is called a 𝑘-threshold review system
if 𝑟−1( ̃𝑟) is convex (except perhaps on a set of measure zero) for each ̃𝑟 ∈ ℛ𝑟.

Optimal review systems are necessarily threshold rules in posterior space.

Lemma A.2. Let 𝑟 be an optimal (posterior) review system with 𝑘 reviews. Then 𝑟
is 𝑘-threshold review system.

Proof. I show that if 𝑟 is a finite review with 𝑘 reviews that is not such a threshold
rule, then there exists a review with 𝑘 reviews that outperforms it. Moreover, I show
that this holds point-wise for each 𝜆, so that certainly it holds over the minimum of
𝜆.

Consider two reviews 𝑟1 and 𝑟2 that cannot be separated by any threshold. Let
𝜋𝑖 = 𝔼[𝜋|𝑟(𝜋) = 𝑟𝑖]. Without loss assume that 𝜋1 ≤ 𝜋2.

Consider any point 𝜋 that lies between 𝜋1 and 𝜋2 (if they are equal, then 𝜋 =
𝜋1 = 𝜋2). By assumption, 𝜋 is not a threshold for these two reviews. In particular,
this means that because 𝜋1 ≤ 𝜋 ≤ 𝜋2, there exists a set Π1 with positive measure
such that for all 𝜋 ∈ Π1, 𝜋 > 𝜋 and 𝑟(𝜋) = 𝑟1. That is, consider the following two
sets

Π1 ≔ {𝜋|𝑟(𝜋) = 𝑟1 and 𝜋 > 𝜋} and

Π2 ≔ {𝜋|𝑟(𝜋) = 𝑟2 and 𝜋 < 𝜋} .

Because 𝜋 is not a threshold for 𝑟1, 𝑟2, and 𝜋1 ≤ 𝜋 ≤ 𝜋2, these sets both must have
positive measure. Suppose that both of their measures are larger than 𝜖. Select a
subset of each that has mass 𝜖: Π𝜖

1, Π𝜖
2. Let 𝜋′

𝑖 = 𝔼[𝜋|𝑟′(𝜋) = 𝑟𝑖] denote the new
conditional expectations. Because of the construction it must necessarily be the case
that 𝜋1 > 𝜋′

1 and 𝜋2 < 𝜋′
2.

33



Now, define a new review function 𝑟′ as follows:

𝑟′(𝜋) =

⎧{{
⎨{{⎩

𝑟(𝜋) if 𝜋 ∉ Π𝜖
1, Π𝜖

2

𝑟1 if 𝜋 ∈ Π𝜖
2

𝑟2 if 𝜋 ∈ Π𝜖
1

.

That is, 𝑟′ agrees with 𝑟, except that it swaps the Π𝜖
𝑖 ’s. I show that we necessarily

have 𝜈(𝑟′) ≥ 𝜈(𝑟). As mentioned, I show that this holds for each 𝜆. To that end,
fix a value of 𝜆 ∈ (0, 1), and let 𝜑(𝜋) ≔ 𝜋𝜆(1 − 𝜋)1−𝜆. I now show that the iterated
expectation of 𝜑(𝜋) on the partition induced by 𝑟′ is lower than on the partition
induced by 𝑟. That is, I aim to show that

𝑏
∑
𝑖=1

𝜑 (𝔼𝛾𝜋
[𝜋|𝑟(𝜋) ∈ 𝑟𝑖]) 𝛾𝜋(𝑟−1(𝑟𝑖)) ≥

𝑏
∑
𝑖=1

𝜑 (𝔼𝛾𝜋
[𝜋|𝑟′(𝜋) ∈ 𝑟𝑖]) 𝛾𝜋((𝑟′)−1(𝑟𝑖)).

Notice now that the two agree except on 𝑟1 and 𝑟2, so that the sum simplifies. Now,
consider adding a linear function ℎ(𝜋) to 𝜑(𝜋) such that the unique maximum of
ℎ + 𝜑 is obtained at 𝜋. Note that this is possible because 𝜑 is strictly concave. In
particular, this means that ℎ+𝜑 is strictly increasing for 𝜋 < 𝜋 and strictly decreasing
for 𝜋 > 𝜋. Then, because ℎ is linear, it is the case that

2
∑
𝑖=1

𝜑 (𝜋𝑖) 𝛾𝜋(𝑟−1(𝑟𝑖)) ≥
2

∑
𝑖=1

𝜑 (𝜋′
𝑖) 𝛾𝜋((𝑟′)−1(𝑟𝑖))

⟺
2

∑
𝑖=1

(𝜑 (𝜋𝑖) + ℎ(𝜋𝑖)) 𝛾𝜋(𝑟−1(𝑟𝑖)) ≥
2

∑
𝑖=1

(𝜑 (𝜋′
𝑖) + ℎ(𝜋′

𝑖)) 𝛾𝜋((𝑟′)−1(𝑟𝑖)).

As observed, it is the case that 𝜋 ≥ 𝜋1 > 𝜋′
1. This means that

𝜑 (𝜋1) + ℎ(𝜋1) > 𝜑 (𝜋′
1) + ℎ(𝜋′

1)

It is similarly the case that

𝜑 (𝜋2) + ℎ(𝜋2) > 𝜑 (𝜋′
2) + ℎ(𝜋′

2)

Since by construction it is the case that 𝛾𝜋(𝑟−1(𝑟𝑖)) = 𝛾𝜋((𝑟′)−1(𝑟𝑖)) for 𝑖 = 1, 2, this
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means that we have achieved a strict improvement. Hence it must be the case that
𝜈(𝑟) < 𝜈(𝑟′).

Proof of Lemma 1. If 𝑓 is log-concave, then for any level of noise 𝑓𝐻
𝑓𝐿

is monotonically
increasing. Consider the optimal posterior review system 𝑟𝜋. The optimal review
system in signal space is given by 𝑟𝜋 ∘ 𝜋(𝑠). Since 𝜋 is monotonic (because 𝑓𝐻

𝑓𝐿
is

increasing), and 𝑟𝜋 is a 𝑘-threshold system by Lemma A.2, it must be the case that
𝑟𝜋 ∘ 𝜋 is a threshold system.

Proof of Lemma 2. The proof follows from an application to Theorem 3, to the case
that 𝑞 ≡ 1 and the review system 𝑟 is a threshold system. To see this, observe that
(with the notation of the proof of Theorem 3), if ̃𝑟 consists of those signals that fall
between 𝜏𝑖−1 and 𝜏𝑖, it is the case that

𝐻′
+(0, ̃𝑟)2 = ⎛

⎝
∫

𝜏𝑖

𝜏𝑖−1

𝑝𝑟𝑓 ′(𝑠)𝑑𝑠⎞
⎠

2

= 𝑝2
𝑟 (𝑓(𝜏𝑖) − 𝑓(𝜏𝑖−1))2 and

𝐻+(0, ̃𝑟) = ⎛
⎝

∫
𝜏𝑖

𝜏𝑖−1

𝑝𝑟𝑓(𝑠)𝑑𝑠⎞
⎠

= 𝑝𝑟 (𝐹(𝜏𝑖) − 𝐹(𝜏𝑖−1)) .

The result follows from simply taking the ratio.

Proof of Theorem 2. This follows from an immediate application of Lemmas 1 and 2.

A.2 Proofs for Section 4

In this appendix I provide the proofs of the results in Section 4. To begin the analysis,
some preliminary calculations are needed. Closely related to our family interest is
the Gamma function.

Definition A.2. Denote by Γ(𝛼) the standard Gamma function, given by

Γ(𝛼) ≔ ∫
∞

0
𝑥𝛼−1𝑒−𝑥𝑑𝑥.

Let Γ(𝛼, 𝑡) denote the upper incomplete gamma function:

Γ(𝛼, 𝑡) ≔ ∫
∞

𝑡
𝑥𝛼−1𝑒−𝑥𝑑𝑥.
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Finally, let 𝛾(𝛼, 𝑡) denote the lower incomplete gamma function

𝛾(𝛼, 𝑡) ≔ ∫
𝑡

0
𝑥𝛼−1𝑒−𝑥𝑑𝑥 = Γ(𝛼) − Γ(𝛼, 𝑡).

Lemma A.3. It is the case that

𝑓𝛼(𝑥) = 𝛼
2Γ(1/𝛼)

𝑒−|𝑥|𝛼 .

Moreover, the Fisher information of 𝑓𝛼 is given by

𝐼𝑓𝛼
(0) = 𝛼2

Γ(1/𝛼)
Γ (2 − 1

𝛼
) .

Proof. The first part of the statement is just ensuring that 𝑓𝛼 is indeed a probability
distribution.

∫
∞

−∞
𝑒−|𝑥|𝛼𝑑𝑥 = 2 ∫

∞

0
𝑒−𝑥𝛼𝑑𝑥.

Make now the substitution 𝑢 = 𝑥𝛼. Then, 1
𝛼𝑢 1

𝛼 −1𝑑𝑢 = 𝑑𝑥 so that

2 ∫
∞

0
𝑒−𝑥𝛼𝑑𝑥 = 2 ∫

∞

0

1
𝛼

𝑢 1
𝛼 −1𝑒−𝑢𝑑𝑢 = 2

𝛼
Γ ( 1

𝛼
) .

This proves the first claim. To show the second claim, recall that the Fisher Infor-
mation is also equal to

𝐼𝑓 = 𝔼 ⎡
⎣

(𝑓 ′(𝑠)
𝑓(𝑠)

)
2
⎤
⎦

= −𝔼 [ 𝜕2

𝜕𝑠2 log(𝑓(𝑠))] .

This means that it is the case that

𝐼𝑓𝛼
= 𝛼

2Γ(1/𝛼)
∫

∞

−∞
( 𝜕2

𝜕𝑥2 |𝑥|𝛼) 𝑒−|𝑥|𝛼𝑑𝑥 = 𝛼
Γ(1/𝛼)

∫
∞

0
( 𝜕2

𝜕𝑥2 𝑥𝛼) 𝑒−𝑥𝛼𝑑𝑥

= 𝛼
Γ(1/𝛼)

∫
∞

0
𝛼(𝛼 − 1)𝑥𝛼−2𝑒−𝑥𝛼𝑑𝑥.
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Now, perform again the substitution of 𝑢 = 𝑥𝛼.

= 𝛼
Γ(1/𝛼)

∫
∞

0
𝛼(𝛼 − 1) 1

𝛼
𝑢 ⋅ 𝑢− 2

𝛼 ⋅ 𝑢 1
𝛼 −1𝑒−𝑢𝑑𝑥

= 𝛼
Γ(1/𝛼)

∫
∞

0
(𝛼 − 1)𝑢− 1

𝛼 𝑒−𝑢𝑑𝑥 = 𝛼(𝛼 − 1)
Γ(1/𝛼)

Γ (1 − 1
𝛼

) .

Since it is the case that Γ(𝛼 + 1) = 𝛼Γ(𝛼),

Γ (1 − 1
𝛼

) = 𝛼
𝛼 − 1

Γ (2 − 1
𝛼

) ,

Concluding,

𝐼𝑓𝛼
(0) = 𝛼2

Γ(1/𝛼)
Γ (2 − 1

𝛼
) .

In all proofs, denote 𝜅𝑓𝛼
(∞; 𝑟𝜏) by 𝜅(𝛼; 𝜏). This is just done to condense notation:

𝜅 is a function of 𝛼 and the threshold 𝜏 of the review system.

Proof of Proposition 1. First, a simple computation shows that 𝜅(𝛼; 0) = 1
Γ( 1

𝛼 )Γ(2− 1
𝛼 ) .

This shows that 𝜅(1; 0) = 1, as Γ(1) = 1.
I now proceed to the other claims. Let 𝜓(𝛼) denote the digamma function

𝜓(𝛼) ≔ Γ′(𝛼)
Γ(𝛼)

.

It is well-known that 𝜓 is strictly increasing on (0, ∞).
Now, let ( 1

𝜅(𝛼;0))
′

denote 𝜕
𝜕𝛼

1
𝜅(𝛼;0) . A straightforward computation yields that

( 1
𝜅(𝛼; 0)

)
′

=
Γ ( 1

𝛼) Γ (2 − 1
𝛼)

𝛼2 (𝜓 (2 − 1
𝛼

) − 𝜓 ( 1
𝛼

)) .

Since 𝜓 is strictly increasing, it is immediately seen that 𝜅′(𝛼; 0) < 0.
It is left to show that lim𝛼→∞ 𝜅(𝛼; 0) = 0. First, it can be easily verified that
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𝜓(2) < 1 and lim𝛼→∞
1
𝛼𝜓 ( 1

𝛼) = −1. These two facts together show that

𝜅′(𝛼; 0)
𝜅(𝛼; 0)

≈ − 1
𝛼

.

That is, lim𝛼→∞ 𝛼𝜅′(𝛼;0)
𝜅(𝛼;0) = −1. This means that log(𝜅(𝛼; 0))′ → −∞, and hence

𝜅(𝛼; 0) → 0. This shows that 𝜅(𝛼; 0) converges to zero, completing the proof.

Proof of Proposition 2. As noted, I restrict attention to 𝜏 ∈ [0, ∞) for the proof. The
analogous proofs apply for 𝜏 ≤ 0.

For ease of reference I restate that the objective that the platform aims to maxi-
mize is given by.

𝑔𝛼(𝜏) ≔ 𝑓𝛼(𝜏)2

𝐹𝛼(𝜏)(1 − 𝐹𝛼(𝜏))
(3)

I proceed in several steps. I first show that 𝜏∗(𝛼) ≠ 0 for 𝛼 > 2, and that it 0 is a
candidate for 𝜏∗(𝛼) for 𝛼 ≤ 2.

Lemma A.4. It is the case that 0 is a local maximum of 𝑔𝛼(𝜏) for 𝛼 ≤ 2, and a local
minimum of 𝑔𝛼(𝜏) for 𝛼 > 2.

Proof. The derivative of (3) with respect to 𝜏 is given by (dropping the subscript 𝛼)

𝑓(𝜏)
𝐹(𝜏)(1 − 𝐹(𝜏))

[2𝑓 ′(𝜏) − 𝑓(𝜏)2 ( 1
𝐹(𝜏)

− 1
1 − 𝐹(𝜏)

)] .

As 𝑓 is of full support, 𝑓(𝜏)
𝐹(𝜏)(1−𝐹(𝜏)) > 0, and so can be ignored when searching

for a critical value, and hence a maximum. The first order condition to be a local
maximum then becomes

2𝑓 ′(𝜏) = 𝑓(𝜏)2 ( 1
𝐹(𝜏)

− 1
1 − 𝐹(𝜏)

) . (4)

For any 𝛼 > 1, 0 is a solution to (4), and hence a candidate for a maximizer. This is
as 𝑓 ′

𝛼(0) = 0 and 𝐹𝛼(0) = 1
2 .

This means that to verify the claim the second order condition is needed. At 0, it
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can be verified that the second-order condition for a maximizer (since 𝐹𝛼(0) = 1
2) is

1
2

𝑓𝛼(0)4 + 1
8

𝑓 ′
𝛼(0)2 + 1

8
𝑓𝛼(0)𝑓″

𝛼(0) ≤ 0.

Notice, for all 𝛼 > 2, we have that 𝑓 ′
𝛼(0) = 0 and 𝑓″

𝛼(0) = 0. This means that,
as 𝑓𝛼(0) > 0, for all 𝛼 > 2, 𝜏 = 0 is a local minimum, and hence is not optimal.
Similarly, for 𝛼 < 2, it is the case that lim𝜏→0 𝑓″

𝛼(𝜏) = −∞, while 𝑓 ′
𝛼(0), 𝑓𝛼(0) > 0

This means that 0 is indeed a local maximum for 𝛼 < 2. The case 𝛼 = 2 can be
computed numerically, and it can be seen that this is indeed a local maximum in this
case.

I now show that there is at most one possible candidate for the maximizer of 𝑔𝛼(𝜏)
on 𝜏 ∈ [0, ∞). This will show uniqueness of 𝜏∗(𝛼).

Lemma A.5. The following are true:

(i) For 𝛼 > 2, there is exactly one value of 𝜏 ∈ (0, ∞) that satisfies (4) and it is a
local maximum of 𝑔𝛼(𝜏); and

(ii) For 𝛼 ≤ 2, no value of 𝜏 ∈ (0, ∞) satisfies (4).

Proof. Throughout I drop the subscript of 𝛼 for notational clarity.

Case 1: 𝛼 > 2.
Straightforward algebra allows (4) to be rewritten as

2𝑓 ′(𝜏)
1 − 2𝐹(𝜏)

= 𝑓2(𝜏)
𝐹(𝜏)(1 − 𝐹(𝜏)

. (5)

Notice that the right-hand side of (5) is exactly 𝑔(𝜏). This means that the value of
𝑔 can also be used to determine the sign of its derivative. Specifically, the critical
points of the objective are exactly those that intersect the curve given by

𝑤(𝜏) ≔ 2𝑓 ′(𝜏)
1 − 2𝐹(𝜏)

.

It is exactly when 𝑔(𝜏) = 𝑤(𝜏) that 𝑔′(𝜏) = 0. Moreover,

𝑔′(𝜏) > 0 ⟺ 𝑔(𝜏) > 𝑤(𝜏).
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Due to this relationship, the characteristics of 𝑤(𝜏) imply certain characteristics
of 𝑔(𝜏). In particular, I now show that 𝑤(𝜏) has one unique maximum on (0, ∞). To
do this, I iterate on the process above. The sign of 𝑤′(𝜏) = 0 is determined by the
sign of

2𝑓″(𝜏)(1 − 2𝐹(𝜏))+4𝑓 ′(𝜏)𝑓(𝜏) (6)

in particular, 𝑤′(𝜏) = 0 if and only if

2𝑓 ′(𝜏)
1 − 2𝐹(𝜏)

= − 𝑓″(𝜏)
𝑓(𝜏)

≔ℎ(𝜏).

Moreover, 𝑤′(𝜏) > 0 if and only if ℎ(𝜏) > 𝑤(𝜏) (notice that this is the reverse
relationship of 𝑤 and 𝑔).

While 𝑤 and 𝑔 are difficult to manage because the presence of 𝐹 in their definition
(and there is no closed-form expression for the incomplete Gamma functions), ℎ(𝜏) =
(𝛼2 − 𝛼)𝑥𝛼−2 − 𝛼2𝑥2𝛼−2. This (relative to 𝑔 and 𝑤) is an extremely simple function.
It can be seen that for all 𝛼 > 2, ℎ has the following properties: (i) ℎ(0) = 0, and
ℎ(𝜏) > 0 for 𝜏 in a neighbourhood of 0; (ii) ℎ is single-peaked; (iii) ℎ(1) < 0; and
(iv) ℎ(𝜏) > 𝑤(𝜏) in a neighbourhood of 0. Properties (i)-(iii) are easily to verify, and
property (iv) follows from 𝑤′(𝜏) > 0 in a neighbourhood of 0 (which directly implies
that 𝑤(𝜏) < ℎ(𝜏)).

Claim 1a: 𝑤(𝜏) has at one critical value on (0, ∞). It is a local maximum, and this
critical value is on (0, 1).

Recall that if 𝑤(𝜏) < ℎ(𝜏), then 𝑤′(𝜏) > 0, and if 𝑤(𝜏) > ℎ(𝜏), then 𝑤′(𝜏) < 0.
First, observe that all critical values of 𝑤 must be on (0, 1) because ℎ is negative of
[1, ∞) (so 𝑤(𝜏) ≠ ℎ(𝜏) for any 𝜏 ≥ 1).

Second, let 𝜏ℎ be the value of 𝜏 that maximizes ℎ. Notice that ℎ is increasing
on (0, 𝜏ℎ) and decreasing on (𝜏ℎ, ∞). Suppose now that 𝑤(𝜏 ′) = ℎ(𝜏 ′) for some
𝜏 ′ ∈ (0, 𝜏ℎ). There must be smallest value of 𝜏 ′ for which this holds, as 𝑤(𝜏) is
strictly increasing in a neighbourhood of 0. Then for this 𝜏 ′, it is the case that
𝑤(𝜏 ′) = 0 and ℎ(𝜏 ′) > 0. This means that for some 𝜖 > 0 it is the case that for all
𝜏 ∈ (𝜏 ′ − 𝜖, 𝜏 ′) it is the case that 𝑤(𝜏) > ℎ(𝜏). But 𝜏 ′ is the smallest positive value
where the two cross, which is a contradiction. This means that it cannot be the case
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that 𝑤′(𝜏) = 0 when ℎ′(𝜏) > 0. This is as, for 𝑤 to cross ℎ when ℎ is increasing it
must be the case that 𝑤 is larger than ℎ before the crossing.

Since eventually 𝑤(𝜏) > ℎ(𝜏), it must be the case then that either 𝑤 = ℎ at the
peak of ℎ, or on the region where ℎ is decreasing. In either case it must be the case
that 𝑤 goes from increasing to decreasing, and can not cross ℎ again. This proves
the claim.

Claim 1b: 𝑔(𝜏) has a most one critical value on (0, ∞). It is a local maximum, and
this critical value is on (0, 1).

Recall that, if 𝑔(𝜏) > 𝑤(𝜏), then 𝑔′(𝜏) > 0, and if 𝑔(𝜏) < 𝑤(𝜏), then 𝑔′(𝜏) < 0.
Notice that because zero is a local minimum of 𝑔(𝜏) (by Lemma A.4), 𝑔(𝜏) is increasing
in a neighbourhood of zero (since we are concerned only with 𝜏 ≥ 0. Moreover, it
is the case that 𝑔(0) > 0 = 𝑤(0). This second equality holds because 𝑓″(0) = 0 for
𝛼 > 2. Denote by 𝜏𝑤 the value of 𝜏 that maximizes 𝑤 on (0, ∞).

Now, suppose that 𝑔(𝜏 ′) = 𝑤(𝜏 ′) for some 𝜏 ′ ∈ (𝜏𝑤, ∞). This is because it
implies that 𝑔(𝜏) > 𝑤(𝜏) for 𝜏 = (𝜏 ′, 𝜏 ′ + 𝜖) for some 𝜖 > 0. However, this means
that 𝑔′(𝜏) > 0 on this region. Because 𝑤 is decreasing on this region, it implies that
𝑔′(𝜏) > 0 on (𝜏 ′, ∞), contradicting that lim𝜏→∞ 𝑔(𝜏) = 0. This means that the two
cannot intersect when 𝑤′(𝜏) < 0.

By a similar logic, it must be the case that 𝑔(𝜏) = 𝑤(𝜏) for some 𝜏 ∈ (0, 𝜏𝑤]. Call
the first point where they intersect 𝜏∗ (well-defined because they are not equal at 0).
Notice that for all 𝜏 ∈ (𝜏∗, 𝜏∗ + 𝜖), it must be the case that 𝑔 is decreasing.20 But, 𝑔
must continue to decrease until they intersect again. So, they cannot intersect until
𝑤 decreases. We have, however, ruled out intersection in that case, so it must be that
𝜏∗ is unique, proving the claim and finishing Case 1.

Case 2: 𝛼 < 2.
In the case of 𝛼 < 2 showing that there is no critical value on (0, ∞) is simpler and
so I omit the details.

In this case, (i) lim𝜏→0 𝑤(𝜏) = ∞ and (ii) ℎ(𝜏) is monotonically decreasing. These
jointly imply that 𝑤(𝜏) is monotonically decreasing to 0. This in turn implies that
𝑔(𝜏) is monotonically decreasing to zero (since they cannot intersect when 𝑤 decreases

20This is obvious in the case that 𝜏∗ < 𝜏𝑤. In the case that 𝜏∗ = 𝜏𝑤, it follows from a similar
argument to showing that there is no intersection when 𝑤 is decreasing.
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in a similar argument to above). This shows that in the case that 𝛼 < 2 it must be
that 𝜏 = 0 is the only possible critical value.

Case 3: 𝛼 = 2.
This is dealt with in a similar manner to Case 2. The major difference is that 𝑤(𝜏)
does not diverge at 0. Instead, it is easy to show that 𝑤(0) = ℎ(0) and 𝑤 is decreasing
in a region of 0, so that it must be monotonically decreasing. This case then reduces
to Case 2.

Now that I have showed that 𝜏∗ exists and is unique, it is sufficient to look at the
solution to the first order condition (4) on (0, ∞). The last things to check are that
𝜏∗(𝛼) → 1, and the bounding value of 𝜅.

Claim: lim𝛼→∞ 𝜏∗(𝛼) = 1.
First, notice that 𝜏∗(𝛼) < 1 for all 𝛼 ≥ 1, by Lemma A.5.
So, I simply show that for all 𝜏 < 1, there exists an 𝛼𝜏 such that: 𝛼 ≥ 𝛼𝜏,

𝑔′
𝛼(𝜏) > 0. To do this, explicitly write the inner term

2𝑓 ′(𝜏) − 𝑓(𝜏)2 ( 1
𝐹(𝜏)

− 1
1 − 𝐹(𝜏)

)

= −𝛼𝜏𝛼−1 ⋅ 𝛼
Γ(1/𝛼)

𝑒−𝜏𝛼

+ ( 𝛼
2Γ(1/𝛼)

𝑒−𝜏𝛼)
2

⎡
⎣

Γ(1/𝛼)
1
2Γ(1/𝛼, 𝜏𝛼)

− Γ(1/𝛼)
1
2Γ(1/𝛼) + 1

2𝛾(1/𝛼, 𝜏𝛼)
⎤
⎦

,

where here Γ(1/𝛼, ⋅) and 𝛾(1/𝛼, ⋅) are the upper- and lower-incomplete gamma func-
tions, respectively. Because we are only interested in the sign of this expression, it is
possible to simplify. It is equivalent to look at the sign of

−2𝜏𝛼−1 + 𝑒−𝜏𝛼 [ 1
Γ(1/𝛼, 𝜏𝛼)

− 1
Γ(1/𝛼) + 𝛾(1/𝛼, 𝜏𝛼)

] . (7)

That is, 𝑔′
𝛼(𝜏) > 0 exactly when (7) is positive. When 𝜏 < 1, the first term

converges to 0, so we need only ensure that the second term stays bounded from
0. First, for fixed 𝜏 < 1, 𝑒−𝜏𝛼 → 1. Second, as 𝛼 → ∞, it is easy to verify that
𝑓𝛼(𝜏) → 1

2𝟙 {𝜏 ∈ [−1, 1]} (except for the measure zero set of {−1, 1}). This means
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that
lim

𝛼→∞
( 1

𝐹(𝜏)
− 1

1 − 𝐹(𝜏)
) = ( 2

𝜏 + 1
− 2

1 − 𝜏
) > 0

for all fixed 𝜏 ∈ (0, 1). This means that neither portions of the second term go to
zero, so that for any 𝜏 in this interval, 𝑔′

𝛼(𝜏) is eventually positive.
This means that 𝜏∗(𝛼) must eventually grow to 1. It is not hard to use the same

arguments to show that 𝜏∗(𝛼)𝛼 converges to the solution of Γ(0, 𝑥) − 1
2𝑥𝑒−𝑥 = 0.

Claim: 𝜅(𝛼; 𝜏∗(𝛼)) < 2𝑒2 ∫∞
1

𝑒−𝑥

𝑥 𝑑𝑥.
For all 𝛼 ≥ 4, it can be seen that 𝜅(𝛼, 1) is less than this limit. For 𝛼 < 4, using

the naive threshold of 0 also returns a value that is less than this limit. This shows
the final claim, and completes the proof of Proposition 2.

Proof of Proposition 3. In order to prove Proposition 3(i), I prove the following,
stronger, lemma.

Lemma A.6. 𝜏∗(𝛼)𝛼 is strictly increasing in 𝛼 for 𝛼 ≥ 2.

Proof. First, notice that

𝜕𝜏∗(𝛼)𝛼

𝜕𝛼
> 0 ⟺ ( 𝜕2

𝜕𝜏𝛼𝜕𝛼
𝑓2

𝛼(𝜏)
𝐹𝛼(𝜏)(1 − 𝐹𝛼(𝜏))

) ∣
𝜏=𝜏∗(𝛼)

> 0.

That is, letting 𝑥 = 𝜏𝛼, the sign of

𝜕
𝜕𝛼

[−2 𝑥
𝑥1/𝛼 𝑒𝑥 + [ 1

Γ(1/𝛼, 𝑥)
− 1

Γ(1/𝛼) + 𝛾(1/𝛼, 𝑥)
]] (8)

must be determined at the optimal value of 𝑥∗(𝛼) = 𝜏∗(𝛼)𝛼. Notice that (8) is
not exactly equal to the derivative, because there is an additional positive term that
multiplies this. However, because what is in the brackets here is zero at the optimal
threshold, this term can be ignored (because it does not influence sign of this object).
This just follows from the envelope theorem. So, we must show that (8) is positive
at 𝑥∗(𝛼).

Another simplification is to replace 𝛼 with 1/𝛼. That is, let 𝛽 ≔ 1/𝛼. A straight-
forward computation that yields that the sign of (8) is the opposite of the sign of

𝑏𝛽(𝑥) ≔2 log(𝑥) 𝑥
𝑥𝛽 𝑒𝑥
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−
∫∞
𝑥

𝑦𝛽−1 log(𝑦)𝑒−𝑦𝑑𝑦
Γ(𝛽, 𝑥)2 +

∫∞
0

𝑦𝛽−1 log(𝑦)𝑒−𝑦𝑑𝑦 + ∫𝑥
0

𝑦𝛽−1 log(𝑦)𝑒−𝑦𝑑𝑦
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2 .

This is because 𝜕
𝜕𝛼𝛽 < 0. So, I show that 𝑏𝛽(𝑥∗(𝛽)) < 0 (abusing notation here

writing 𝑥∗(𝛽)) for 𝛽 < 1
2 . As a final choice to make notation easier, let 𝜆𝛽 denote the

measure that is induced by 𝑦𝛽−1𝑒−𝑦 (that is, 𝑑𝜆𝛽(𝑦) = 𝑦𝛽−1𝑒−𝑦𝑑𝑦). Then, 𝑏𝛽(𝑥) can
be written as

2 log(𝑥) 𝑥
𝑥𝛽 𝑒𝑥 −

∫∞
𝑥

log(𝑦)𝑑𝜆𝛽(𝑦)
Γ(𝛽, 𝑥)2 +

∫∞
0

log(𝑦)𝑑𝜆𝛽(𝑦) + ∫𝑥
0

log(𝑦)𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2 . (9)

Note that in the notation above, we have that

Γ(𝛽) = ∫
∞

0
𝑑𝜆𝛽(𝑦), Γ(𝛽, 𝑥) = ∫

∞

𝑥
𝑑𝜆𝛽(𝑦), and 𝛾(𝛽) = ∫

𝑥

0
𝑑𝜆𝛽(𝑦).

Now, at 𝑥∗(𝛽), from (8), it is the case that

2𝑥1−𝛽𝑒𝑥 = 1
Γ(𝛽, 𝑥)

− 1
Γ(𝛽) + 𝛾(𝛽, 𝑥)

.

This means that it is possible to write (9) at 𝑥∗(𝛽) (I write 𝑥 instead of 𝑥∗(𝛽) for
conciseness) as

log(𝑥) ( 1
Γ(𝛽, 𝑥)

− 1
Γ(𝛽) + 𝛾(𝛽, 𝑥)

)

−
∫∞
𝑥

log(𝑦)𝑑𝜆𝛽(𝑦)
Γ(𝛽, 𝑥)2 +

∫∞
0

log(𝑦)𝑑𝜆𝛽(𝑦) + ∫𝑥
0

log(𝑦)𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2 .

=
log(𝑥) ∫∞

𝑥
𝑑𝜆𝛽(𝑦)

Γ(𝛽, 𝑥)2 −
log(𝑥) (∫∞

0
𝑑𝜆𝛽(𝑦) + ∫𝑥

0
𝑑𝜆𝛽(𝑦))

Γ(𝛽) + 𝛾(𝛽, 𝑥)

−
∫∞
𝑥

log(𝑦)𝑑𝜆𝛽(𝑦)
Γ(𝛽, 𝑥)2 +

∫∞
0

log(𝑦)𝑑𝜆𝛽(𝑦) + ∫𝑥
0

log(𝑦)𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2

=
∫∞
𝑥

(log(𝑥) − log(𝑦)) 𝑑𝜆𝛽(𝑦)
Γ(𝛽, 𝑥)2

+
∫∞
0

(log(𝑦) − log(𝑥)) 𝑑𝜆𝛽(𝑦) + ∫𝑥
0

(log(𝑦) − log(𝑥)) 𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2 .
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Since log is an increasing function, it must be that ∫∞
𝑥

(log(𝑥) − log(𝑦)) 𝑑𝜆𝛽(𝑦) < 0
whenever 𝛽 < 1

2 , so that 𝑥∗(𝛽) > 0. Moreover, it must always be the case that
Γ(𝛽, 𝑥) < Γ(𝛽) + 𝛾(𝛽, 𝑥) whenever 𝑥 > 0. This means that at 𝑥∗(𝛽) it is the case
that

∫∞
𝑥

(log(𝑥) − log(𝑦)) 𝑑𝜆𝛽(𝑦)
Γ(𝛽, 𝑥)2 <

∫∞
𝑥

(log(𝑥) − log(𝑦)) 𝑑𝜆𝛽(𝑦)

(Γ(𝛽) + 𝛾(𝛽, 𝑥))2 .

This means that (9) evaluated at 𝑥∗(𝛽) is less than

∫∞
𝑥

(log(𝑥) − log(𝑦)) 𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2

+
∫∞
0

(log(𝑦) − log(𝑥)) 𝑑𝜆𝛽(𝑦) + ∫𝑥
0

(log(𝑦) − log(𝑥)) 𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2

=
2 ∫𝑥

0
(log(𝑦) − log(𝑥)) 𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2 < 0.

This proves that 𝑥∗(𝛽) is decreasing in 𝛽, so that 𝜏∗(𝛼)𝛼 is increasing in 𝛼 for all
𝛽 < 1

2 . This in turn shows that 𝜏∗(𝛼)𝛼 is increasing in 𝛼 for all 𝛼 ≥ 2.

As noted, Proposition 3(i) follows as an immediate corollary of this lemma, since
𝜏∗(𝛼) < 1 for all 𝛼.

Proof of Proposition 3(ii):
In what follows, let 𝑃(𝛼, 𝑡) ≔ 𝛾(𝛼, 𝑡)/Γ(𝛼) denote the normalized lower incomplete
gamma function.

First, recall that 𝜏∗(𝛼)𝛼 strictly increasing in 𝛼 by Lemma A.6. I show the claim
separately on two intervals, based off of the behaviour of 𝑓𝛼(0) as a function of 𝛼. In
what follows, let 𝛼∗ be defined as the unique value for which 𝜓(1/𝛼) + 𝛼 = 0. For
𝛼 < 𝛼∗, it is the case that Γ(1/𝛼)/𝛼 is decreasing in 𝛼 (so that 𝑓𝛼(0) is increasing),
and for 𝛼 > 𝛼∗ it is the case the Γ(1/𝛼)/𝛼 is increasing in 𝛼 (so that 𝑓𝛼(0) is
decreasing).

Case 1: 𝛼 < 𝛼∗.
First, on this region, for a fixed 𝜏 with 0 < 𝜏 < 1, it must be the case that 𝑓𝛼(𝜏) is
increasing in 𝛼. This is because clearly 𝜏𝛼 is decreasing in 𝛼, and this is the region
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where 𝛼
Γ(𝛼) is increasing.

Now, 𝐹𝛼(0) ≡ 1
2 , and for all 0 < 𝜏 < 𝜏 ′, it is the case that 𝑓𝛼(𝜏) is increasing in

𝛼. This means that, for all 𝛼, 𝛼′ ∈ (2, 𝛼∗) with 𝛼 < 𝛼′, it is the case that

𝐹𝛼(𝜏∗(𝛼)) < 𝐹𝛼′(𝜏∗(𝛼)).

From Lemma A.6 it is the case that 𝜏∗(𝛼′) > 𝜏∗(𝛼), so that

𝐹𝛼′(𝜏∗(𝛼)) < 𝐹𝛼′(𝜏∗(𝛼′)).

This shows that 𝐹𝛼(𝜏∗(𝛼)) is increasing in 𝛼 on this range, completing the proof in
this case.

Case 2: 𝛼 > 𝛼∗.
Since we have that 𝛼 > 𝛼∗ and we have showed that 𝜏∗(𝛼) is increasing in 𝛼, it must
be the case that 𝑓𝛼(𝜏∗(𝛼)) is decreasing in 𝛼 for 𝛼 > 𝛼∗, as by definition Γ(1/𝛼)/𝛼
is increasing for all 𝛼 > 𝛼∗.

This means that if it is the case that

𝑓𝛼(𝜏∗(𝛼))2

𝐹𝛼(𝜏∗(𝛼))(1 − 𝐹𝛼(𝜏∗(𝛼)))
(10)

is increasing in 𝛼, then the claim holds in this case. This is because, for (10) to
be increasing, if the numerator is decreasing then the denominator must be in turn
decreasing. This implies that 𝐹𝛼(𝜏∗(𝛼)) is increasing in 𝛼, which is what we set out
to show. A stronger condition is that

( 𝛼
Γ(1/𝛼))

2

(1 + 𝑃(1/𝛼, 𝜏))(1 − 𝑃(1/𝛼, 𝜏))
(11)

is increasing in 𝛼 for fixed 𝜏, where 𝑃(1/𝛼, 𝜏) ≔ Γ(1/𝛼,𝜏)
Γ(1/𝛼) is the normalized incomplete

Gamma function. This is a stronger condition because it is saying is that if we look
at values of 𝜏 for each 𝛼 that make 𝑒−𝜏𝛼 equal, then these values of 𝜏 cause this ratio
to increase. In particular, consider evaluating (10) at 𝜏∗(𝛼) for some 𝛼. If (11) is
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increasing in 𝛼, then for all 𝛼′ > 𝛼 it must be the case that

𝑓𝛼′(𝜏∗(𝛼)𝛼/𝛼′)2

𝐹𝛼′(𝜏∗(𝛼)𝛼/𝛼′)(1 − 𝐹𝛼′(𝜏∗(𝛼)𝛼/𝛼′))
> 𝑓𝛼(𝜏∗(𝛼))2

𝐹𝛼(𝜏∗(𝛼))(1 − 𝐹𝛼(𝜏∗(𝛼)))
.

Since by optimality it is the case that

𝑓𝛼′(𝜏∗(𝛼′))2

𝐹𝛼′(𝜏∗(𝛼′))(1 − 𝐹𝛼′(𝜏∗(𝛼′)))
≥ 𝑓𝛼′(𝜏∗(𝛼)𝛼/𝛼′)2

𝐹𝛼′(𝜏∗(𝛼)𝛼/𝛼′)(1 − 𝐹𝛼′(𝜏∗(𝛼)𝛼/𝛼′))
,

this will prove the claim.
I now show that (11) is indeed increasing in 𝛼. Perform the switch to 𝛽 ≔ 1/𝛼,

as the in proof of Lemma A.6. Then, the above can be rewritten as

( 1
𝛽Γ(𝛽))

2

(1 + 𝑃(𝛽, 𝑥))(1 − 𝑃(𝛽, 𝑥))

= 1
2𝛽2Γ(𝛽)

( 1
Γ(𝛽) + 𝛾(𝛽, 𝑥)

+ 1
Γ(𝛽) − 𝛾(𝛽, 𝑥)

) .

Multiplying by 2 and then taking the derivative with respect to 𝛽 here yields

−
2𝛽Γ(𝛽) + 𝛽2 ∫∞

0
log(𝑦)𝑑𝜆𝛽(𝑦)

(𝛽2Γ(𝛽))2 ( 1
Γ(𝛽) + 𝛾(𝛽, 𝑥)

+ 1
Γ(𝛽) − 𝛾(𝛽, 𝑥)

)

− 1
𝛽2Γ(𝛽)

⎛
⎝

∫∞
0

log(𝑦)𝑑𝜆𝛽(𝑦) + ∫𝑥
0

log(𝑦)𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2 +

∫∞
𝑥

log(𝑦)𝑑𝜆𝛽(𝑦)
(Γ(𝛽) − 𝛾(𝛽, 𝑥))2

⎞
⎠

.

Here I use the definition of 𝜆𝛽(𝑦) from the proof of Lemma A.6. The goal is to
show that this object is negative. Again let Γ′(𝛽)/Γ(𝛽) ≔𝜓(𝛽) and observe that for
𝛼 > 𝛼∗ by definition it the case that 1

𝛽 + 𝜓(𝛽) < 0. Now, straightforward arithmetic
shows that the sign of this is equivalent to the sign of

−
∫∞
0

(log(𝑦) + 2
𝛽 + 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦) + ∫𝑥

0
(log(𝑦) + 2

𝛽 + 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦)
(Γ(𝛽) + 𝛾(𝛽, 𝑥))2

−
∫∞
𝑥

(log(𝑦) + 2
𝛽 + 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦)

(Γ(𝛽) − 𝛾(𝛽, 𝑥))2 .
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I first show that for all 𝑥 ∈ (0, ∞) and 𝛽, it is the case that.

− ∫
∞

𝑥
(log(𝑦) + 2

𝛽
+ 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦) < 0.

Now, consider that on this region of 𝛽, by definition it is the case that

− (2
𝛽

+ 𝜓(𝛽)) = 2 (1
𝛽

+ 𝜓(𝛽)) + 𝜓(𝛽) < 𝜓(𝛽).

This means that

− ∫
∞

𝑥
(log(𝑦) + 2

𝛽
+ 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦) < ∫

∞

𝑥
(− log(𝑦) + 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦)

Now, the sign of the above is equivalent to the sign of

∫∞
𝑥

(− log(𝑦) + 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦)
∫∞
𝑥

𝑑𝜆𝛽(𝑦)
.

This, however, is clearly decreasing in 𝑥, because smaller values of 𝑥 correspond to
the average log value being smaller. Since it is clearly equal to zero at 𝑥 = 0, this
shows that

− ∫
∞

𝑥
(log(𝑦) + 2

𝛽
+ 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦) < 0.

This in turn implies that

−
∫∞
𝑥

(log(𝑦) + 2
𝛽 + 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦)

(Γ(𝛽) − 𝛾(𝛽, 𝑥))2 < −
∫∞
𝑥

(log(𝑦) + 2
𝛽 + 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦)

(Γ(𝛽) + 𝛾(𝛽, 𝑥))2 .

This means that it is sufficient to check the sign of

− ∫
∞

0
(log(𝑦) + 2

𝛽
+ 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦) − ∫

𝑥

0
(log(𝑦) + 2

𝛽
+ 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦)

− ∫
∞

𝑥
(log(𝑦) + 2

𝛽
+ 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦)
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and ensure that it is negative. But this expression is equal to

−2 ∫
∞

0
(log(𝑦) + 2

𝛽
+ 𝜓(𝛽)) 𝑑𝜆𝛽(𝑦) = −Γ′(𝛽) − (2

𝛽
+ 𝜓(𝛽)) Γ(𝛽) < 0,

where this last inequality follows from the observation above:

(2
𝛽

+ 𝜓(𝛽)) Γ(𝛽) > −Γ′(𝛽)

This completes the proof in this case.

Proof of Proposition 4. First, notice that

𝑓(𝑠) ≔ 𝑓𝛼𝐿,𝛼𝐻
(𝑠) = 1

Γ(1/𝛼𝐿)
𝛼𝐿

+ Γ(1/𝛼𝐻)
𝛼𝐻

(𝟙{𝑠 ≥ 0}𝑒−𝑠𝛼𝐻 + 𝟙{𝑠 ≤ 0}𝑒−(−𝑠)𝛼𝐿 )

Recall that, by definition, Γ(1/𝛼)
𝛼 is increasing in 𝛼 for all 𝛼 ≥ 𝛼∗. This means, in

particular, that there is a larger mass of positive signals than negative signals in this
case.

What must be shown is that

𝑓(𝜏)2

𝐹(𝜏)(1 − 𝐹(𝜏))

is maximized for a negative value of 𝜏. For ease of notation, let 𝛼 ≔ 𝛼𝐻 and 𝛼′ ≔ 𝛼𝐿.
Notice that as before, the numerator is strictly increasing in 𝜏 for 𝜏 < 0, and strictly
decreasing in 𝜏 for 𝜏 > 0. Since 𝛼′ > 𝛼, for small values of 𝜏 there is larger persistence
in the value of 𝑓 on the negative side of the distribution.21 Explicitly, given a 𝜏 > 0,
we have that −𝜏𝛼/𝛼′ < −𝜏 (for 𝜏 < 1, which is again be optimal here) has the same
value of the numerator. From here, the claim is two-fold.

Claim 1: The optimal choice of 𝜏 for 𝜏 > 0 has 𝜏 ≥ 𝜏∗(𝛼).
To see this, consider that the first order condition is given by

−2𝛼𝜏𝛼−1 − 𝑒−𝑥𝛼 ⎡⎢
⎣

1
Γ(1/𝛼′)

𝛼′ + ∫𝜏
0

𝑒−𝑥𝛼𝑑𝑥
− 1

∫∞
𝜏

𝑒−𝑥𝛼𝑑𝑥
⎤⎥
⎦

.

21Of course, for 𝜏 > 1 this is reversed, because the tails are smaller on the negative side of the
distribution than the positive side of the distribution.
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As Γ(1/𝛼′)
𝛼′ > Γ(1/𝛼)

𝛼 , the first fraction is smaller, so that the positive component is
larger. This means that for the first order condition to be satisfied for 𝜏 > 0 we need
𝜏 > 𝜏∗(𝛼).

Claim 2: For all 𝜏 > 𝜏∗(𝛼), it is the case that 1 − 𝐹(𝜏) > 𝐹(−𝜏𝛼/𝛼′).
Notice that

1 − 𝐹(𝜏) = 1
Γ(1/𝛼)

𝛼 + Γ(1/𝛼′)
𝛼′

∫
∞

𝜏
𝑒−𝑥𝛼𝑑𝑥 = 1

Γ(1/𝛼)
𝛼 + Γ(1/𝛼′)

𝛼′

⋅
Γ ( 1

𝛼 , 𝜏𝛼)
𝛼

and

𝐹(−𝜏𝛼/𝛼′) = 1
Γ(1/𝛼)

𝛼 + Γ(1/𝛼′)
𝛼′

∫
∞

𝜏𝛼/𝛼′
𝑒−𝑥𝛼′

𝑑𝑥 = 1
Γ(1/𝛼)

𝛼 + Γ(1/𝛼′)
𝛼′

⋅
Γ ( 1

𝛼′ , 𝜏𝛼)
𝛼′

From here it is sufficient to show that Γ(1/𝛼,𝜏∗(𝛼)𝛼)
𝛼 > Γ(1/𝛼′,𝜏∗(𝛼)𝛼)

𝛼′ for all 𝛼′ > 𝛼.
Notice that the value of 𝜏 at which this is evaluated is important: it does not hold
for all 𝜏 (indeed, it clearly does not hold for 𝜏 = 0).

Subclaim: Γ(1/𝛼,𝜏𝛼)
𝛼 > Γ(1/𝛼′𝜏𝛼)

𝛼′ for 𝛼 ≥ 𝛼∗ and 𝜏𝛼 ≥ 𝜏∗(𝛼∗)𝛼∗ > 0.001.
Now, do the standard change of variable for 𝛽 ≔ 1/𝛼 and 𝑥 ≔ 𝜏𝛼. I show that

for 𝛽 < 1/𝛼∗ it is the case that

𝜕
𝜕𝛽

(Γ(𝛽, 𝑥) ⋅ 𝛽) > 0

for all 𝑥 > 0.001. The above is equivalent to (after some straightforward algebra in
the same vein as above)

−1
𝛽

<
∫∞
𝑥

log(𝑦)𝑑𝜆𝛽(𝑦)
∫∞
𝑥

𝑑𝜆𝛽(𝑦)
(12)

where the 𝑑𝜆𝛽(𝑦) notation is the same as in Lemma A.6. Notice first that the right-
hand side of (12) is (i) increasing in 𝑥 and (ii) increasing in 𝛽. Property (i) holds
because is because log is increasing, and so by increasing 𝑥 the average log value
increases. Property (ii) follows from a similar logic: smaller 𝛽 put more weight on
smaller values of 𝑦 (and hence smaller values of log).
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This means that if (12) holds for 𝑥∗ ≔ 0.001, then the (sub)claim will be proved.
From here, several straightforward computations prove the claim:

−2.16 <
∫∞
𝑥∗ log(𝑦)𝑑𝜆1/2.7(𝑦)

∫∞
𝑥∗ 𝑑𝜆1/2.7(𝑦)

,

dealing with 𝛽 ∈ ( 1
2.7 , 1

𝛼∗ ]. Then,

−2.7 <
∫∞
𝑥∗ log(𝑦)𝑑𝜆1/4(𝑦)

∫∞
𝑥∗ 𝑑𝜆1/4(𝑦)

,

dealing with then 𝛽 ∈ (1
4 , 1

𝛼∗ ]. Finally, it is the case that

−4 <
∫∞
𝑥∗ log(𝑦)𝑑𝜆0(𝑦)

∫∞
𝑥∗ 𝑑𝜆0(𝑦)

.

This means that for all 𝛽 ∈ (0, 1
𝛼∗ ] it is the case that (12) holds. This proves Claim

2.
From here, the conclusion is reached by simply putting together Claims 1 and 2:

for any possible optimal positive 𝜏, there is a negative threshold that performs strictly
better, so the optimal threshold must be negative.

A.3 Proofs for Section 5.1

Proof of Lemma 3. This is a straightforward application of Theorem 1.

Proof of Theorem 3. The statement holds for general 𝑝, except for the result that the
value is contained in [0, 1]. The object of interest is

lim
𝜎→∞

𝜌(𝜎; 𝑟, 𝑝)
𝜌(𝜎; 𝑟𝑓, 𝑝)

.

In order to simplify notation, I consider an equivalent limit in terms of 𝜇. When
signals are normalized, 𝑓𝐿(𝑠) = 𝑓 (𝑠 + 𝜇

𝜎). This means that taking the limit as
𝜎 → ∞ holding 𝜇 fixed is equivalent to taking the limit as 𝜇 → 0 while holding 𝜎
fixed. The notation is easier holding 𝜎 fixed, and so I consider everything in terms of
the limit as 𝜇 → 0. Since the fixed value of 𝜎 is irrelevant, I set 𝜎 = 1.
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First, define

𝑓(𝑠, 𝜇, 𝜆) ≔ 𝑓(𝑠 + 𝜇)𝜆𝑓(𝑠 − 𝜇)1−𝜆.

Let 𝜌(𝜇; 𝑟𝑓, 𝑝, 𝜆) denote the value of 𝜌(𝜇; 𝑟𝑓, 𝑝) evaluated at a fixed (but not neces-
sarily optimal) 𝜆. That is, 𝜌(𝜇; 𝑟𝑓, 𝑝) = max𝜆∈[0,1] 𝜌(𝜇; 𝑟𝑓, 𝑝, 𝜆). It can easily be seen
that 𝜌(𝜇; 𝑟𝑓, 𝑝), 𝜌(𝜇; 𝑟, 𝑝) → 0. Hence, l’Hopital’s rule must be applied. As is shown
below, it is also the case that 𝜕

𝜕𝜇𝜌(𝜇; 𝑟𝑓, 𝑝), 𝜕
𝜕𝜇𝜌(𝜇; 𝑟𝑓, 𝑝) → 0. Hence, both the first

and second derivative of the numerator and denominator must be computed.

Step 1: Denominator 𝑟𝑓. The regularity assumptions on 𝑓 mean that, for a fixed
𝜆, this is given by

− 𝜕
𝜕𝜇

𝜌(𝜇; 𝑟𝑓, 𝑝, 𝜆) =

∫ (𝜆𝑓 ′(𝑠 + 𝜇)
𝑓(𝑠 + 𝜇)

− (1 − 𝜆)𝑓 ′(𝑠 − 𝜇)
𝑓(𝑠 − 𝜇)

) 𝑓(𝑠, 𝜇, 𝜆)𝑝(𝑟𝑓, 𝑠)𝑑𝑠

+𝜆
∫ ((1 − 𝑝(𝑟𝑓, 𝑠))𝑓(𝑠 + 𝜇)𝑑𝑠)𝜆−1

∫ ((1 − 𝑝(𝑟𝑓, 𝑠))𝑓(𝑠 − 𝜇)𝑑𝑠)𝜆−1 ∫ ((1 − 𝑝(𝑟𝑓, 𝑠))𝑓 ′(𝑠 + 𝜇)𝑑𝑠)

−(1 − 𝜆)
∫ ((1 − 𝑝(𝑟𝑓, 𝑠))𝑓(𝑠 + 𝜇)𝑑𝑠)𝜆

∫ ((1 − 𝑝(𝑟𝑓, 𝑠))𝑓(𝑠 − 𝜇)𝑑𝑠)𝜆 ∫ ((1 − 𝑝(𝑟𝑓, 𝑠))𝑓 ′(𝑠 − 𝜇)𝑑𝑠) .

Notice that because of the envelope theorem, the derivative with respect to 𝜆 is equal
to zero. Consider the limit as 𝜇 → 0. First, 𝑓(𝑠, 𝜇, 𝜆) → 𝑓(𝑠). Hence, the limit is
equal to

− lim
𝜇→0

𝜕
𝜕𝜇

𝜌(𝜇; 𝑟𝑓, 𝑝, 𝜆) = (2𝜆 − 1) ∫ 𝑝(𝑟𝑓, 𝑠)ℓ𝑓(𝑠)𝑓(𝑠)𝑑𝑠 + (2𝜆 − 1) ∫(1 − 𝑝(𝑟𝑓, 𝑠))𝑓 ′(𝑠)𝑑𝑠.

This is equal to zero since ℓ𝑓(𝑠)𝑓(𝑠) = 𝑓 ′(𝑠), and ∫ 𝑓 ′(𝑠)𝑑𝑠 = 0 (because the expecta-
tion of the linear score function is zero). This means that the second derivative must
be considered.22 Again, the derivative with respect to 𝜆 is zero. This means that 𝜆
may be fixed, and the optimal value of 𝜆 derived at the end of the computation.

To simplify the null review notation, let 𝐻+(𝜇, 𝑛) ≔ ∫(1 − 𝑝(𝑟𝑓, 𝑠))𝑓(𝑠 + 𝜇)𝑑𝑠
22This is reliant on the numerator converging to zero at the same rate. I show this below.
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(where 𝑛 refers to “null”), and similarly 𝐻−(𝜇, 𝑛). In a similar vein, let 𝐻′
+(𝜇, 𝑛) ≔

∫(1 − 𝑝(𝑟𝑓, 𝑠))𝑓 ′(𝑠 + 𝜇)𝑑𝑠. Similarly define 𝐻′
−(𝜇, 𝑛) (and 𝐻″

±(𝜇, 𝑛)). Computing,

− 𝜕2

𝜕𝜇2 𝜌(𝜇; 𝑟𝑓, 𝑝, 𝜆) =

∫ 𝜆(𝜆 − 1) ⎛
⎝

(𝑓 ′(𝑠 + 𝜇)
𝑓(𝑠 + 𝜇)

)
2

+ (𝑓 ′(𝑠 + 𝜇)𝑓 ′(𝑠 − 𝜇)
𝑓(𝑠 + 𝜇)𝑓(𝑠 − 𝜇)

)⎞
⎠

𝑓(𝑠, 𝜇, 𝜆)𝑝(𝑟𝑓, 𝑠)𝑑𝑠

− ∫ 𝜆(1 − 𝜆) ⎛
⎝

(𝑓 ′(𝑠 − 𝜇)
𝑓(𝑠 − 𝜇)

)
2

+ (𝑓 ′(𝑠 − 𝜇)𝑓 ′(𝑠 + 𝜇)
𝑓(𝑠 − 𝜇)𝑓(𝑠 + 𝜇)

)⎞
⎠

𝑓(𝑠, 𝜇, 𝜆)𝑝(𝑟𝑓, 𝑠)𝑑𝑠

+ ∫ (𝜆𝑓″(𝑠 + 𝜇)
𝑓(𝑠 + 𝜇)

+ (1 − 𝜆)𝑓″(𝑠 − 𝜇)
𝑓(𝑠 − 𝜇)

) 𝑓(𝑠, 𝜇, 𝜆)𝑝(𝑟𝑓, 𝑠)𝑑𝑠

+𝜆(𝜆 − 1)
𝐻+(𝜇, 𝑛)𝜆−1

𝐻−(𝜇, 𝑛)𝜆−1 (
𝐻′

+(𝜇, 𝑛)
𝐻+(𝜇, 𝑛)

+ 𝐻′
−(𝜇, 𝑛)

𝐻−(𝜇, 𝑛)
) 𝐻′

+(𝜇, 𝑛)

−(1 − 𝜆)𝜆
𝐻+(𝜇, 𝑛)𝜆

𝐻−(𝜇, 𝑛)𝜆 (
𝐻′

+(𝜇, 𝑛)
𝐻+(𝜇, 𝑛)

+ 𝐻′
−(𝜇, 𝑛)

𝐻−(𝜇, 𝑛)
) 𝐻′

−(𝜇, 𝑛)

+𝜆
𝐻+(𝜇, 𝑛)𝜆−1

𝐻−(𝜇, 𝑛)𝜆−1 𝐻″
+(𝜇, 𝑛) + (1 − 𝜆)

𝐻+(𝜇, 𝑛)𝜆

𝐻−(𝜇, 𝑛)𝜆 𝐻″
−(𝜇, 𝑛).

The limit is given by

lim
𝜇→0

𝜕2

𝜕𝜇2 𝜌(𝜇; 𝑟𝑓, 𝑝, 𝜆) =

4𝜆(1 − 𝜆) ∫ (𝑓 ′(𝑠)
𝑓(𝑠)

)
2

𝑓(𝑠)𝑝(𝑟𝑓, 𝑠) + ∫ 𝑓″(𝑠)𝑝(𝑟𝑓, 𝑠)𝑑𝑠

+4𝜆(1 − 𝜆)
𝐻′

+(0, 𝑛)2

𝐻+(0, 𝑛)
+ 𝐻″

+(0, 𝑛)

= 4𝜆(1 − 𝜆) ∫ (𝑓 ′(𝑠)
𝑓(𝑠)

)
2

𝑓(𝑠)𝑝(𝑟𝑓, 𝑠) + ∫ 𝑝(𝑟𝑓, 𝑠)𝑓″(𝑠)𝑑𝑠

+4𝜆(1 − 𝜆)
(∫(1 − 𝑝(𝑟𝑓, 𝑠))𝑓 ′(𝑠)𝑑𝑠)2

∫(1 − 𝑝(𝑠))𝑓(𝑠)𝑑𝑠
+ ∫(1 − 𝑝(𝑠))𝑓″(𝑠)𝑑𝑠.

As the anti-derivative of 𝑓″(𝑠) is 𝑓 ′(𝑠), it is the case that ∫ 𝑓″(𝑠)𝑑𝑠 = 0. Similarly
∫ 𝑓 ′(𝑠)𝑑𝑠 = 0, and ∫ 𝑓(𝑠)𝑑𝑠 = 1. This shows that this value is equal to the denomi-
nator in the statement of the proposition when 𝜆 = 1

2 . As 𝜆 = 1
2 maximizes 𝜆(1 − 𝜆),

it is the maximizer of this object, and so is the optimal 𝜆.
This completes the derivations for the denominator. I now turn attention to the
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numerator. The computations are similar to those for null reviews above.

Step 2: Numerator 𝑟. The terms in the numerator are of the following form.
Define

𝑔 ̃𝑟(𝜇, 𝜆) ≔ ⎛
⎝

∫
{𝑠∶𝑟(𝑠)∈ ̃𝑟}

𝑓(𝑠 + 𝜇)𝑝(𝑟, 𝑠)𝑑𝑠⎞
⎠

𝜆

⎛
⎝

∫
{𝑠∶𝑟(𝑠)∈ ̃𝑟}

𝑓(𝑠 − 𝜇)𝑝(𝑟, 𝑠)𝑑𝑠⎞
⎠

1−𝜆

.

Similarly, for null reviews define

𝑔𝑛(𝜇, 𝜆) ≔ (∫ 𝑓(𝑠 + 𝜇)(1 − 𝑝(𝑟, 𝑠))𝑑𝑠)
𝜆

(∫ 𝑓(𝑠 − 𝜇)(1 − 𝑝(𝑟, 𝑠))𝑑𝑠)
1−𝜆

.

The value of the denominator for a fixed 𝜆 is of the form

𝜌(𝜇; 𝑟, 𝑝, 𝜆) ≔ 1 − ∑
̃𝑟∈ℛ𝑟

𝑔 ̃𝑟(𝜇, 𝜆) − 𝑔𝑛(𝜇, 𝜆).

In order to make computations easier to follow, I compute the limits term by term.
Notice that the computations for 𝑔𝑛(𝜇, 𝜆) have already been computed above. For
notational clarity, define

𝐻+(𝜇, ̃𝑟) = ∫
{𝑟(𝑠)∈ ̃𝑟}

𝑓(𝑠 + 𝜇)𝑝(𝑟, 𝑠)𝑑𝑠.

and similarly all of the related functions (𝐻−(𝜇, ̃𝑟), 𝐻′
±(𝜇, ̃𝑟), 𝐻″

±(𝜇, ̃𝑟)). Notice here
that the term is 𝑝(𝑟, 𝑠) and not 1 − 𝑝(𝑟, 𝑠), because these are submitted reviews. Let

𝜕
𝜕𝜇

𝑔 ̃𝑟(𝜇, 𝜆) = 𝜆
𝐻+(𝜇, ̃𝑟)𝜆−1

𝐻−(𝜇, ̃𝑟)𝜆−1 𝐻′
+(𝜇, ̃𝑟) − (1 − 𝜆)

𝐻+(𝜇, ̃𝑟)𝜆

𝐻−(𝜇, ̃𝑟)𝜆 𝐻′
−(𝜇, ̃𝑟).

This means that

lim
𝜇→0

𝜕
𝜕𝜇

𝑔 ̃𝑟(𝜇, 𝜆) = (2𝜆 − 1)𝐻′(0, ̃𝑟).
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Recall that we have already computed the dynamics of 𝑔𝑛(𝜇, 𝜆) above. This means
that, regardless of 𝜆, we have that

− lim
𝜇→0

𝜕
𝜕𝜇

𝜌(𝜇; 𝑟, 𝑝, 𝜆) =(2𝜆 − 1) ⎛
⎝

∑
̃𝑟∈ℛ𝑟

𝐻′
+(0, ̃𝑟) + 𝐻′

+(0, 𝑛)⎞
⎠

=(2𝜆 − 1) ⎛
⎝

∑
̃𝑟∈ℛ𝑟

∫
{𝑟(𝑠)∈ ̃𝑟}

𝑓 ′(𝑠)𝑝(𝑟, 𝑠)𝑑𝑠 + ∫ 𝑓 ′(𝑠)(1 − 𝑝(𝑟, 𝑠))𝑑𝑠⎞
⎠

=(2𝜆 − 1) ∫ 𝑓 ′(𝑠)𝑑𝑠 = 0.

As in the case of full reviews, the variation in 𝜆 does not contribute and so 𝜆 may be
considered point-wise. In particular, this means that the second derivative must be
considered. Computing,

𝜕2

𝜕𝜇2 𝑔 ̃𝑟(𝜇, 𝜆) =𝜆(𝜆 − 1)
𝐻+(𝜇, ̃𝑟)𝜆−1

𝐻−(𝜇, ̃𝑟)𝜆−1 (
𝐻′

+(𝜇, ̃𝑟)
𝐻+(𝜇, ̃𝑟)

+ 𝐻′
−(𝜇, ̃𝑟)

𝐻−(𝜇, ̃𝑟)
) 𝐻′

+(𝜇, ̃𝑟)

− (1 − 𝜆)𝜆
𝐻+(𝜇, ̃𝑟)𝜆

𝐻−(𝜇, ̃𝑟)𝜆 (
𝐻′

+(𝜇, ̃𝑟)
𝐻+(𝜇, ̃𝑟)

+ 𝐻′
−(𝜇, ̃𝑟)

𝐻−(𝜇, ̃𝑟)
) 𝐻′

−(𝜇, ̃𝑟)

+ 𝜆
𝐻+(𝜇, ̃𝑟)𝜆−1

𝐻−(𝜇, ̃𝑟)𝜆−1 𝐻″
+(𝜇, ̃𝑟) + (1 − 𝜆)

𝐻+(𝜇, ̃𝑟)𝜆

𝐻−(𝜇, ̃𝑟)𝜆 𝐻″
−(𝜇, ̃𝑟).

Notice that these computations are similar to those used for 𝑔𝑛(𝜇, 𝜆) in the compu-
tation of the numerator’s second derivative. Note again that the variation in 𝜆 does
not contribute. This means that

lim
𝜇→0

𝜕2

𝜕𝜇2 𝑔 ̃𝑟(𝜇, 𝜆) = 4𝜆(𝜆 − 1)
𝐻′

+(0, ̃𝑟)2

𝐻+(0, ̃𝑟)
+ 𝐻″

+(0, ̃𝑟).

All that is left is to collect terms and notice again tjat ∫ 𝑓″(𝑠)𝑑𝑠 = 0:

lim
𝜇→0

𝜕2

𝜕𝜇2 𝜌(𝜇; 𝑟, 𝑝, 𝜆) = − ∑
̃𝑟∈ℛ𝑟

(4𝜆(𝜆 − 1)
𝐻′

+(0, ̃𝑟)2

𝐻+(0, ̃𝑟)
+ 𝐻″

+(0, ̃𝑟))

− 4𝜆(𝜆 − 1)
𝐻′

+(0, 𝑛)2

𝐻+(0, 𝑛)
− 𝐻″

+(0, 𝑛)

=4𝜆(1 − 𝜆) ⎛
⎝

∑
̃𝑟

𝐻′
+(0, ̃𝑟)2

𝐻+(0, ̃𝑟)
+

𝐻′
+(0, 𝑛)2

𝐻+(0, 𝑛)
⎞
⎠

.
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Observe that 𝜆 = 1
2 is again the maximizer. This finishes the computation for the

numerator. Finally, putting this result together with the computations from the
denominator above proves the claim.

B Relationship between the Platform and Consumers’ Pref-
erence over Information Structures

In this section, I study the perspective of a consumer choosing which source of in-
formation to use when making their decision. In practice, many platforms elicit
multiple types of information from reviewers; often one can leave a coarse rating and
then supplement the rating with a free-text full review.

In the work above I take the perspective of the platform ex-ante choosing what
type of review to elicit. In that choice the platform internalizes the randomness in the
review decisions of reviewers. If there are multiple types of reviews that have been
collected, when it comes time for consumers to choose between them, this randomness
has been removed. So, the comparison is not between the rates of acquisition, but
directly between the number of reviews of each type of review.

The comparison from the side of consumers is more similar to asking how many
coarsened reviews “equals” one review of another type. The distinction between the
two is subtle, but as shown below, the removal of risk leads the consumer to require
more coarsened reviews. However, as individual reviews become uninformative, this
difference disappears and so the metric of learning loss from Lemma 2 applies again.

Lemma B.1. Fix a consumer with a (finite) decision problem, two review systems
𝑟, 𝑟′, and a degree of distinction 𝜇. Then there exists an 𝑁 large such that for all
𝑛𝑟, 𝑛𝑟′ > 𝑁, 𝑛𝑟 reviews of type 𝑟 is preferred to 𝑛𝑟′ reviews of type 𝑟′ if

𝑛𝑟
𝑛𝑟′

> log(1 − 𝜈(𝜇; 𝑟′))
log(1 − 𝜈(𝜇; 𝑟))

.

Proof. Let (𝑛𝑟, 𝑟) denote the statistical experiment that generates 𝑛𝑟 conditionally
independent signals of drawn according to 𝑟. Then, because each of the signals are
independent,

𝜈(𝜇; (𝑛𝑟, 𝑟)) =1 − min
𝜆∈[0,1]

∫
𝑅

... ∫
𝑅

𝑛𝑟

∏
𝑖=1

(𝛾𝑟
𝐿(𝑑 ̃𝑟𝑖))

𝜆 (𝛾𝑟
𝐻(𝑑 ̃𝑟𝑖))

1−𝜆
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=1 − min
𝜆∈[0,1]

𝑛𝑟

∏
𝑖=1

∫
𝑅

(𝛾𝑟
𝐿(𝑑 ̃𝑟𝑖))

𝜆 (𝛾𝑟
𝐻(𝑑 ̃𝑟𝑖))

1−𝜆

=1 − (1 − 𝜈(𝜇; 𝑟))𝑛𝑟 .

From here, the result comes from an application of either Torgersen’s theorem or
Theorem 1. Note that this result follows the same logic as Proposition 3 in Mu et al.
(2021). See also Chernoff (1952), which discusses this relationship at some length.

This condition is similar to, but not exactly, the condition of Theorem 1. As the
next Proposition highlights, because the information for consumers is not random,
consumers place more weight on “good” information than the platform. However, as
information becomes very noisy, this difference shrinks and eventually disappears in
the limit. Specifically, the relationship is as follows.

Proposition B.1. Let 𝜅(𝜇; 𝑟′, 𝑟) ≔ 𝜈(𝜇;𝑟′)
𝜈(𝜇;𝑟) and let 𝜁(𝜇; 𝑟′, 𝑟) ≔ log(1−𝜈(𝜇;𝑟′))

log(1−𝜈(𝜇;𝑟)) . Then,

𝜅(𝜇; 𝑟′, 𝑟) < 𝜁(𝜇; 𝑟′, 𝑟) ⟺ 𝜈(𝜇; 𝑟′) > 𝜈(𝜇; 𝑟).

However,

lim
𝜇→0

𝜅(𝜇; 𝑟′, 𝑟) = lim
𝜇→0

𝜁(𝜇; 𝑟′, 𝑟).

Proof. For all 𝑥, 𝑦 ∈ (0, 1),

log(1 − 𝑥)
log(1 − 𝑦)

> 𝑥
𝑦

⟺ 𝑥 > 𝑦.

This shows the first claim. For the second, one can apply l’Hopital’s rule to the limit
of 𝜇 → 0 for

𝜁(𝜇; 𝑟′, 𝑟) = log(1 − 𝜈(𝜇; 𝑟′))
log(1 − 𝜈(𝜇; 𝑟))

.

and find that

lim
𝜇→0

𝜁(𝜇; 𝑟′, 𝑟) = lim
𝜇→0

𝜕
𝜕𝜇𝜈(𝜇; 𝑟′)

𝜕
𝜕𝜇𝜈(𝜇; 𝑟)

= lim
𝜇→0

𝜂(𝜇; 𝑟′, 𝑟).
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This shows the second claim, completing the proof.

The platform’s choice between ratings systems must necessarily reflect the ran-
domness with which it receives information. This means that, relative to a consumer
who does not need to factor-in this randomness, the platform values more frequent,
but uninformative, reviews. This result suggests why in practice platforms collect
multiple sources of information: consumers trade-off between sources of information
in different ways than do platforms, because of the timing of their choice between
sources of information.
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