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Chapter 1

Introduction

This is my first year preparing these notes. As a result, there will be errors. Please let
me know if you find any. There may be a prize for the student who finds the most errors
(measured by my whims). Also, please let me know what material could use more attention,
whether in terms of time, delivery, or exercises.

Many of the problems that are used in these notes come from problem sets that I myself
wrote. Solutions are being updated as issues arise: please let me know if you find any errors.
Other exercises are interesting problem that I have taken from previous years’ exams, or
from previous years’ exercises.

1.1 Main Topics and References
Here is a (partial) list of all of the professors and textbooks that have influenced the con-
struction of these notes. I am thankful for their instruction as well as their exercises.

∘ Edward Bierstone: some of the optimization theory.

▷ Michael Spivak, Calculus on Manifolds

▷ Gerald B. Folland, Advanced Calculus

∘ Jonathan Korman: most of the optimization theory.

▷ David G. Luenberger and Yinyu Ye, Linear and Nonlinear Programming

∘ Fabio Pusateri: most of the measure theory.

▷ Charles C. Pugh, Real Mathematical Analysis

∘ Gun Ho Jang: some of the probability theory section.

I am also grateful to Alberto Ramírez de Aguilar for his slides from previous years’ math
camps. I have used those to guide my construction of those notes, especially the probability
theory section. I also used his notes on measure theory to compare to the treatment with
which I am familiar. His notes informed much of the probability theory sections as well. As
noted, I have also drawn from his collection of exercises.
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1.2 Things left to do
examples and exercises...

∘ i think that most of the optimization theory section is actually done, except for the
examples and exercises that i want to include.

▷ this is high priority.

∘ probability theory, inequalities, etc. especially jensen’s inequality is going to be an
important thing to talk about. apart from that i think that using alberto’s notes is
going to be sufficient for us. (be cognizant of time)

▷ i need to think about what i want to do in terms of convergence results and the
inequalities

▷ am already at a lot of pages, not sure how much more I need to do

1.3 Other Points
Throughout, ZF+C is used. Although, unless I have missed something, the Axiom of Choice
is only used briefly in the Measure Theory section.

There are several sections that I might change in future years. Especially, I am not sure
if the functional optimization section is as useful as I make it out to be. If, at the end of
the year, you find that it would have been better to cover linear programming or dynamic
programming, please let me know.

Finally, if you don’t enjoy the math, at least enjoy the music.
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Chapter 2

Optimization

As economists, it is important to ask why we care about math. Our goal is in general to
push our understanding of the ways that humans behave. We apply this understanding to
many varied settings: how people make choices about education and healthcare, how people
choose where to live, and how policies affect these choices, etc.

Because we cannot perfectly control for the environment, and perfectly isolate the differ-
ent mechanisms at play in human decision-making, economists use models as the framework
for discussing and investigating the trade-offs at play in peoples’ decisions.

What these models almost universally have in common is a posited objective for indi-
viduals. There is something that agents want. Sometimes we will be explicit in what this
is (i.e., a firm seeks profit) and sometimes we are not explicit in this (i.e., when we talk
about utility). These models also give agents choices. Let 𝒳 be the set of choices that an
individual has, and let 𝑥 ∈ 𝒳 be a specific choice that an individual can make. Often we
will say that 𝒳 ⊆ ℝ𝑛, which is a given parameterization of the choice set (e.g., years of
schooling).

Just as we parameterize the choices, we also parameterize the objective of agents by
some function that looks like 𝑓 ∶ 𝒳 → ℝ. Again, sometimes this will be natural (choices
about production will lead to given profits) and sometimes this parameterization will not
be natural (as in the case of individual utility). By giving this parameterization to agents,
we are saying that an agent’s goal is to solve the following problem:

max
𝑥∈𝒳

𝑓(𝑥)

What does this mean? For a choice 𝑥 to maximize 𝑓 among all choices that are available
to an agent, we need the following to be true:

𝑓(𝑥) ≥ 𝑓(𝑦) for all 𝑦 ∈ 𝒳

For the most part, we are not that interested in the value of 𝑓(𝑥) itself, even for this
maximizer 𝑥. If our interest is predominantly in the choices that an individual makes, then
what we are most interested is

𝒳∗ ≔ argmax𝑥∈𝒳 𝑓(𝑥) = {𝑥 ∈ 𝒳|𝑓(𝑥) ≥ 𝑓(𝑦) for all 𝑦 ∈ 𝒳}

This is the set of all maximizers of 𝑓 on the set 𝒳.
Natural questions arise here:

∘ Do we have 𝒳∗ ≠ ∅?

∘ Do we have |𝒳∗| = 1?
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∘ If |𝒳∗| > 1, then what is the value of |𝒳∗|?

The purpose of this chapter is to develop tools to solve the problem above. We will
also investigate properties that will ensure that we have maximizers, and also that we have
unique maximizers.

2.1 Unconstrained Optimization
Charlotte Cardin, 99 Nights

In this section we look at the problem in as much generality as we can. Here, we assume
that 𝑓 ∶ ℝ𝑛 → ℝ, so that 𝒳 = ℝ𝑛. As a first observation, it is obvious that we need to place
some conditions on our functions in order to have something intelligent to say in general. If
our parameterization 𝑓 is poorly behaved, then we will not be able to develop general tools.

Assumption 2.1.1. Let 𝑓 ∶ ℝ𝑛 → ℝ be our objective function. We (unless noted) assume
that 𝑓 ∈ 𝒞2. That is, 𝑓 is continuous and twice continuously differentiable.

Example 2.1.1. Consider the following functions defined on [0, 1]:

𝑓(𝑥) ≔ 𝟙{𝑥 ∈ ℚ}
𝑔(𝑥) ≔ 𝑥(1 − 𝑥) + 𝟙{𝑥 = 0.75}

ℎ(𝑥) ≔ − ∣𝑥 − 1
2∣

The first is just a poorly behaved function. The second is better behaved, but the point
of discontinuity makes it so that any general analysis is impossible. The third similarly is
actually a very nice function, but its lack of differentiability at 1/2 makes to impossible to
make use of differentiation.

This will ensure that we are able to use the technical tools of multivariate calculus. Now,
we need to introduce some definitions. There are two different types of maxima which will
be of interest to us:

Definition 2.1.2. A global maximum of 𝑓 is an 𝑥 ∈ ℝ𝑛 such that 𝑓(𝑥) ≥ 𝑓(𝑦) for all
𝑦 ∈ ℝ𝑛.

This is the definition that we used above when we were motivating what our goal was.
In general, this is the object in which we are interested. We care about what choice does the
best for an agent, and so we care about all of their possible choices. At the same time, the
tools that we are going to use are predominantly going to be the tools of calculus. These
tools are inherently local. They tell us about what is happening near a certain function, not
what is happening globally.1

Definition 2.1.3. A local maximum of 𝑓 is an 𝑥 ∈ ℝ𝑛 such that there exists a neighbour-
hood 𝑈 of 𝑥 such that 𝑓(𝑥) ≥ 𝑓(𝑦) for all 𝑦 ∈ ℝ𝑛.

1This is the beauty of complex analysis, where the local behaviour of a function perfectly determines
what happens elsewhere. This is an entirely unrelated point, and evidences that I wrote this section first.
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Example 2.1.2. Adding to our list of running questions, it is natural to ask:

Does 𝑥 ∈ {local maxima} ⇒ 𝑥 ∈ {global maxima} ?

It can easily be shown that this is not generally true. See Figure 2.1. However, we will be
able to derive some conditions for which this will be the case. I defer this question to later.
For the next portion, we will deal only with local maxima.

𝑥

𝑓(𝑥)

𝑓(𝑥)

Figure 2.1: Example showing that local maxima need not be global maxima

We now present the first result of this section, which you should all be able to recognize
as an immediate generalization of a first-year calculus result.

Theorem 2.1.4 (First Order Necessary Condition). Suppose that 𝑥 is a local maximum of
𝑓. Then we have that ∇𝑓(𝑥) = 0.

Proof. This follows from a passing through to one dimension, and then an immediate ap-
plication of the definition of a derivative. Suppose that we have that ∇𝑓(𝑥) ≠ 0. Then at
least one entry of ∇𝑓(𝑥) is nonzero. Suppose without loss that it is the first entry. Also
suppose without loss that the first entry is 𝑐 > 0. Then, by the definition of a derivative,
that for every small 𝜖 there exists a 𝛿 > 0 such that 𝑦 ≔ 𝑥 + 𝛿

2𝑒1 we have

∣ 𝑓(𝑦) − 𝑓(𝑥)
||𝑦 − 𝑥|| − 𝑐∣ < 𝜖

By simply moving things around, we have that

𝛿
2 (𝑐 − 𝜖) < 𝑓(𝑦) − 𝑓(𝑥) < 𝛿

2 (𝑐 + 𝜖)

So, we have that 𝑓(𝑦) > 𝑓(𝑥) as long as we take 𝜖 < 𝑐. As we can take 𝛿 arbitrarily small,
we have that 𝑥 is not the maximum of 𝑓 on any of its neighbourhoods, so that it is not a
local maximum.2 If 𝑐 < 0, then by simply considering 𝑦det𝑥 − 𝛿

2𝑒1 the same conclusion is
reached.

2As a matter of form, one shouldn’t use proofs by contradiction if one can make it a proof by contraposition
instead. This proof would not have benefited from my assuming at the outset that 𝑥 is a local maximum
and then saying we have derived a contradiction at the end.
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Two points:

1. We needed to have that there exists a neighbourhood of 𝑥 on which 𝑓 is defined. Of
course, when the set under consideration is given by ℝ𝑛 (or homeomorphic to ℝ𝑛)
then this is not a problem. When we move to looking at constrained optimization,
then we will need to adjust this, as the statement will then only be true for any 𝑥 in
the interior of the constraint set.

2. This is very much only a necessary condition. It is certainly not sufficient. Consider
everyone’s favourite counterexample in 𝑥3. It certainly has zero derivative at 0, but 0
is certainly not a local maximum.

Notice that the intuition for the proof is identical in the one-dimensional case as in
the multi-dimensional case. It is natural to then ask if the second- order condition in one
dimension applies can be generalized to higher dimensions. It can (and the interpretation
is exactly the same), but in order to state it we need to concern ourselves with some more
tedious notation.

Definition 2.1.5. Let 𝐻 ∈ ℝ𝑛×𝑛 be a symmetric matrix. Then we say that 𝐻 is negative
semi-definite if we have, for all 𝑥 ∈ ℝ𝑛 that ⟨𝑥, 𝑥⟩𝐻 ≔ 𝑥𝑇𝐻𝑥 ≤ 0. We say that it is negative
definite if the inequality is strict for all 𝑥. In the first case we write 𝐻 ≤ 0 and in the second
we write 𝐻 < 0.

An equivalent characterization of the above I think provides more intuition.

Lemma 2.1.6. A symmetric matrix 𝐻 is negative semi-definite if and only if all of its
eigenvalues are weakly negative. A symmetric matrix 𝐻 is negative definite if and only if
all of its eigenvalues are strictly negative.

Proof. As 𝐻 is symmetric, it is orthogonally diagonalizable. From here the result is imme-
diate (decompose a vector as the linear combination of orthogonal eigenvectors).

Example 2.1.3. In order to see why this intuition is useful, we consider again a one-
dimensional example. In one dimension, even if 𝑓 ′(𝑥) = 0, if 𝑓″(𝑥) > 0, then we know that
we cannot have a local maximum. For example, consider the difference between 𝑥2 and −𝑥2.
So, the second derivative provides another necessary condition for a function to have a local
maximum at 𝑥. However, again as 𝑥3 tells us, there are issues if we have that 𝑓″(𝑥) = 0
(making a weak inequality a necessary, but not sufficient, condition). We can summarize
these two points in the following results. In higher dimensions, the only difference now is
that we need to consider what happens every possible one-dimensional ray.

Theorem 2.1.7 (Second Order Necessary Condition). Suppose that 𝑥 is a local maximum
of 𝑓. Then it must be that ∇2𝑓(𝑥) ≤ 0.

This summarizes the intuition for why zero is not a maximum for 𝑥2. The next result
shows that in some cases we can make claims about sufficiency (dealing with the example
of 𝑥3).

Theorem 2.1.8 (Second Order Sufficient Condition). Suppose that at 𝑥 we have ∇𝑓(𝑥) = 0
and ∇2𝑓(𝑥) < 0. Then we have that 𝑥 is a strict local maximum, where strict here means
that for a neighbourhood 𝑈 of 𝑥 we have that 𝑓(𝑥) > 𝑓(𝑦) for all 𝑦 ∈ 𝑈 ∖ {𝑥}.
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Proof. Apply a Taylor expansion around 𝑥. Then we have that, in a direction 𝑣 we have
that, for all 𝑠 ∈ ℝ

𝑓(𝑥 + 𝑠𝑣) = 𝑓(𝑥) + 𝑠 ⟨∇𝑓(𝑥), 𝑣⟩ + 1
2𝑠

2 ⋅ ⟨𝑣, 𝑣⟩∇2𝑓(𝑥) + 𝑜(𝑠2)

where you should know what this “little-𝑜” notation means. Because ∇𝑓(𝑥) = 0, the second
term disappears. And, because we have that ∇2𝑓(𝑥) < 0, the third term is negative. Hence,
by dividing by 𝑠2 and taking 𝑠 → 0, the claim is proved.

Summary: We have defined the different types of maxima for a function 𝑓. We also looked
at some necessary conditions for a point to be a local maximum, and have additionally
derived one sufficient condition for a point to be a local maximum of a function.

Actually Optimizing: With these tools, how could we actually go about solving the
problem that we want to solve? Well, we know two conditions that must be satisfied for a
point to be a local maximum. By taking the total derivative of 𝑓 and setting it equal to zero,
we will reduce our problem to looking only at a relatively small number of points (typically
a measure zero set, and often a finite number of points). For these points, we can then
look at the hessian of 𝑓. If the hessians for any of them are negative definite then we have
found a local maximum. If they are negative semi-definite, we will need to be a little bit
smarter (and this is where the artistry comes in). If they have positive eigenvalues we can
rule them out. This will leave us typically with a small number of points for consideration.
From these, how do we get a global maximum? Simple: compare all of the local maxima,
and the one with the greatest value is the global maximum.

Example 2.1.4. Consider the function 𝑓 ∶ ℝ2 → ℝ that is given by

𝑓(𝑥, 𝑦) = 𝑥2 + 4𝑥 + 3𝑥𝑦 − 𝑦2

1. Find candidates for local maxima/minima through first-order conditions.

2. Which of these candidates satisfy the second-order necessary (sufficient) conditions?

3. Are there global maxima and minima?

Solution.

1. We have that

∇𝑓(𝑥, 𝑦) = (2𝑥 + 4 + 3𝑦
3𝑥 − 2𝑦 )

Only solutions to this system of equation are possible candidates. We must have that
𝑦 = 3

2𝑥, so that 𝑥 = − 8
13 and 𝑦 = − 12

13 is the only candidate.

2. We check the value of the Hessian here.

∇2𝑓(𝑥, 𝑦) = (2 3
3 −2)

It can be verified that the eigenvalues of this matrix are
√
13 and −

√
13, so that this

point is neither a maximum nor a minimum.
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3. No, clearly not. Consider (𝑛, 0) and (0, 𝑛) as 𝑛 → ∞.

2.2 Equality Constraints
Half Moon Run, Salt

The above section gives us the machinery that we are going to need even when we look
at more complicated settings. In general, all that we are going to change is to restrict the
directional vector 𝑣 to be “feasible.” We are again considering a function 𝑓 defined on ℝ𝑛, but
now restrict ourselves to a subset of ℝ𝑛 and look for local maxima on this set. What is the
interpretation? There is some (differentiable) manifold of interest, and we only care about
what happens to 𝑓 on this subset. Suppose that 𝑓 converts different activities into some
kind of output (e.g., money). Then a common example is going to be restricting ourselves
to looking at a fixed amount of time spent on each of the activities (𝑥1 + ...𝑥𝑛 = ℎ for
some fixed ℎ). Most of what we care about in economics is this “constrained” optimization:
reduce computing power restricted to some amount of accuracy, maximize welfare subject
to budget constraints, etc.

I am guessing that at some point during all of your previous education you have seen a
Lagrangian before. It is a powerful tool of optimization, and will be extremely important
in basically every optimization problem that you do throughout first year.

That being said, I think that very seldom is the underlying theory discussed in detail.
So, I want to start with the theory, and then progress into some examples of how the theory
can be applied.

Theorem 2.2.1. Let 𝑈 ⊆ ℝ𝑛 be open, and 𝑔 ∶ 𝑈 → ℝ𝑝 be a 𝒞1 function: 𝑔 = (𝑔1, ..., 𝑔𝑝).
Similarly, let 𝑓 ∶ 𝑈 → ℝ be differentiable. Suppose that 𝑓 has a local extreme value on
𝑔−1(0) at a point 𝑎, where 𝐷𝑔(𝑎) has rank 𝑝 (i.e., the inverse is smooth at 𝑎). Then, there
exist 𝜆1, ..., 𝜆𝑝 ∈ ℝ such that ∇𝑓(𝑎) = ∑𝑝

𝑖=1 𝜆𝑖∇𝑔𝑖(𝑎).

Notice first that this gives us a problem in 𝑛 + 𝑝 unknowns (the 𝑎 and the 𝜆𝑖’s) and
𝑛+𝑝 equations (the ∇𝑖’s and the 𝑔’s). It turns out that from here we just need to apply the
implicit function theorem (which you should have seen), and then some basic linear algebra
(which you should have seen).

Proof. Now, because we have that the rank of 𝐷𝑔 is given by 𝑝, there exist 𝑖1, ..., 𝑖𝑝 such
that

det 𝜕𝑔
𝜕(𝑥𝑖1

, ..., 𝑥𝑖𝑝
) ≠ 0

without loss, assume that it is the last 𝑝. We now write 𝑥 = (𝑢, 𝑣) = (𝑢1, ..., 𝑢𝑛−𝑝, 𝑣1, ..., 𝑣𝑝).
Hence, by the implicit function theorem, we can solve 𝑔(𝑢, 𝑣) for 𝑣 = ℎ(𝑢) in a neigh-

bourhood of 𝑎, where ℎ is a 𝒞1 function. The function 𝜕(𝑢) = 𝑓(𝑢, ℎ(𝑢)) has an extreme
value at (𝑎1, ..., 𝑎𝑛−𝑝).

We have that 𝐷𝜑(𝑢) = 𝐷𝑓(𝑢, ℎ(𝑢))𝐷(𝑢, ℎ(𝑢)), where this last matrix is of dimension
𝑛 × 𝑛 − 𝑝. We get that

∇𝜑(𝑢) = ∇𝑓(𝑢, ℎ(𝑢)) ⋅ ( 𝐼
𝐷ℎ(𝑢))
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As the left-hand side is equal to zero at (𝑎1, ..., 𝑎𝑛−𝑝), then we know that we have that

∇𝑓(𝑎, ℎ(𝑎)) ⋅ ( 𝐼
𝐷ℎ(𝑎)) = 0 = ∇𝑔(𝑎, ℎ(𝑎)) ⋅ ( 𝐼

𝐷ℎ(𝑎))

This is because of how ℎ is defined: because it is to be such that 𝑔 is always 0, the derivative
of 𝑔 with respect to the parameterization ℎ must be zero. Finally, we apply some basic
linear algebra.

First, because of the assumption that we have 𝐷𝑔 having rank 𝑝, we know that all of
the ∇𝑔𝑖 are linearly independent. Now, notice that the matrix

( 𝐼𝑛−𝑝
𝐷ℎ(𝑎))

Will have full rank, because of the identity matrix in the first 𝑛 − 𝑝 rows. Hence, the left-
kernel of this map has dimension 𝑝 (as it is surjective from ℝ𝑛 to ℝ𝑛−𝑝). Because all of the
∇𝑔𝑖 lie in this kernel, and are linearly independent, they form a basis for this kernel. We
conclude.

We call these 𝜆 the Lagrange multipliers. They have their interpretation as “Shadow
Prices” on the constraints, because 𝜆𝑖 is the differential increase in 𝑓 if the constraint 𝑔𝑖
were relaxed differentially. Hence, the constraint 𝑔𝑖 imposes a “cost” of 𝜆𝑖 on 𝑓.

Intuition: Why is this construction important? I think that it highlights what is hap-
pening when we are doing Lagrangian optimization. For each of the binding constraints, we
are restricting our search to points that lie on this constraint. That reduces the problem to
looking at a subspace.3 As we move along this constraint, we will hit a zero of ∇𝑓 (because
it is a local minimum where the constraint binds). However, when we back this out we have
an additional term that comes from needing to bind on the constraint itself.

Example 2.2.1. Why do we assume that 𝐷𝑔 has rank 𝑝? Consider a simple case where
𝑔 ∶ ℝ2 → ℝ, with 𝑔(𝑥, 𝑦) = 𝑥2. Then the constraint set 𝑔−1(0) is just the 𝑦-axis. Now
consider 𝑓(𝑥) = 𝑥 − 𝑦2. This has a nontrivial maximum on the constraint set at the
origin, but here ∇𝑓(0, 0) ≠ (0, 0)𝑇. The rank condition ensures that we are getting enough
information from 𝑔.

Geometric Interpretation: A different (perhaps better) way to think about what is
happening is interpreting the final result itself. What we are saying is that the gradient
of 𝑓, which corresponds to the direction of steepest ascent,4 moves in exactly the same
direction as the constraint. Because we are holding the constraint fixed, we are interested
in the tangent space, so that we are perpendicular. For 𝑓 to achieve a (constrained) local
maximum, then we need there to be no way to ascend without violating the constraint (draw
a picture!).

3This subspace corresponds to the manifold generated by that constraint.
4see Section ??
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Why is this useful? To understand this, it is probably best to go through some examples.
Notice that as with many of the results of the previous section, the above provides a necessary
condition, but not a sufficient condition. More than this, the above theorem doesn’t tell you
how to deal with multiple constraints. In general, there will be some binding constraints
and some non-binding constraints. So, it requires some level of thought in order to reduce
the problem into one that is manageable and we can apply the theorem’s results. Notice
even then that solving the system of equations isn’t in general easy.

2.2.1 Examples
Example 2.2.2. Show that the maximum value of the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦2𝑧2 on the
sphere 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 is 𝑟6/27.

Solution. This is an abstract problem, but I think it highlights a basic example of for what
we need to check. The first step is to translate the problem into the language that we have
used. That is, 𝑓 is our objective that we are maximizing, and

𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 𝑟2

our constraint function.
Because we are looking for solutions on the sphere, by the above theorem we can look

for (𝑥, 𝑦, 𝑧, 𝜆) that are solutions to the following system of equations.

2𝑥𝑦2𝑧2 + 2𝜆𝑥 =0
2𝑥2𝑦𝑧2 + 2𝜆𝑦 =0
2𝑥2𝑦2𝑧 + 2𝜆𝑧 =0
𝑥2 + 𝑦2 + 𝑧2 =𝑟2

Now we need to solve this system of equations. We first note again that the above theorem
is one of necessity and not sufficiency, so we need to rule out some problems. Notice that
𝜆, 𝑥, 𝑦 = 0, and 𝑧 = 𝑟 is going to satisfy the system, but will not be a maximum. Indeed,
we cannot have any of the 𝑥, 𝑦, 𝑧 = 0, for there 𝑓 will be equal to zero. We can apply this
to the above, and get a reduced system:

𝑦2𝑧2 + 𝜆 =0
𝑥2𝑧2 + 𝜆 =0
𝑥2𝑦2 + 𝜆 =0

The other possibility is that |𝑥| = |𝑦| = |𝑧|, so that 3𝑥2 = 𝑟2, which then yields that the
maximum is going to be achieved at 𝑥2𝑦2𝑧2 = (𝑟2/3)3 = 𝑟6/27.

Example 2.2.3. Consider the function

𝑓(𝑥, 𝑦) = −(𝑦 − 𝑥2)2

and the set

{(𝑥, 𝑦) ∈ ℝ2|𝑦 ≤ −2𝑥 − 1}

Find the local maxima of 𝑓 on the set, and also find which local maxima are global maxima.
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I choose this example for several reasons. First, it highlights the difference between local
and global minima. Second, it highlights that inequality constraints aren’t really all that
different from equality constraints, at least some of the time. Finally, it highlights a little
how being smart (observant) can save you some energy, but doing things rigourously can be
painful.

Solution. First, translating this into our language, we look at 𝑔(𝑥, 𝑦) = −2𝑥 − 1 − 𝑦 as our
constraint function, and we are interesting in the set 𝑔(𝑥, 𝑦) ≥ 0. I look at −𝑓 and hence
search for minima instead of maxima. Notice that of course the problem is identical!

Notice that this function can be extended to a 𝐶∞ function on ℝ2, so it makes sense to
compute its gradient generally.

We have that

𝜕𝑓
𝜕𝑥 = −4𝑥(𝑦 − 𝑥2)

𝜕𝑓
𝜕𝑦 = 2(𝑦 − 𝑥2)

Now, these are simultaneously zero only when 𝑦 = 𝑥2. On our set, we must have that
𝑥2 + 2𝑥 + 1 = (𝑥 + 1)2 ≥ 0 so that 𝑥 = −1, 𝑦 = 1. What this means is that we have no
interior points as being local minimums, since at these interior points we would need to have
∇𝑓 = 0.

I now check to confirm that the only possible local minimum on the boundary is (−1, 1).
Take any point (𝑥, 𝑦) other than this on the boundary. In particular, for this point we have
𝑥 ≠ 1. I show that in some feasible direction, 𝑓 is decreasing. To confirm this, I show that

⟨∇𝑓(𝑥, 𝑦), ( 1
−2)⟩ < 0 or ⟨∇𝑓(𝑥, 𝑦), (−1

2 )⟩ < 0,

so that the point (𝑥, 𝑦) violates the necessary first order condition for a minimum. These
directions are exactly the vectors along the boundary.

On the boundary, we have 𝑦 = −2𝑥−1. Hence ∇𝑓(𝑥, 𝑦) = (4𝑥(𝑥 + 1)2

−2(𝑥 + 1)2) We have then

that

⟨∇𝑓(𝑥, 𝑦), ( 1
−2)⟩ = 4(𝑥 + 1)3 and that ⟨∇𝑓(𝑥, 𝑦), (−1

2 )⟩ = −4(𝑥 + 1)3

As 𝑥 ≠ −1 by hypothesis, at least one of these is negative, violating the necessary first-order
condition for a minimum.

I now show that (−1, 1) is in fact a local (and global) minimum for this set. It is in fact
obvious to see because it is the only point on the set for which 𝑦 = 𝑥2, and hence is the
only point on the set for which 𝑓(𝑥, 𝑦) ≤ 0. However, I show this as well by showing that it
satisfies the necessary second-order condition. We have that

∇2𝑓(−1, 1) = (8 4
4 2)

This can easily be seen to have one eigenvalue of zero (with eigenvector (1 −2)) and also
one eigenvalue of 10 (with eigenvector (2 1)). Hence, the Hessian is positive semi-definite so
that it satisfies the necessary second-order condition.
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Now, suppose that we are interested in finding the global minima on the set. We could
do it in two ways, for instance.

First, the smart way: 𝑓 is positive everywhere on the set except for at this point.
Second, suppose that we didn’t make this observation. Then, we would need to show

this in a different way. For example, we could show this by showing that along any ray, the
function is strictly increasing. Why do I highlight this? If you were operating on autopilot,
then it would be easy to fall into the trap of plowing ahead without thinking. Taking thirty
seconds is better with these types of problems ins important. But I digress.

Consider any feasible ray emanating from (−1, 1), parameterized by 𝑥 or 𝑦 (whichever is
appropriate on the line). We can consider 𝑓 as a function ℝ → ℝ on this line. I show that the
derivative of 𝑓 on this line in the direction of (−1, 1) is negative so that 𝑓(𝑥, 𝑦) > 𝑓(−1, 1).
First, on the vertical line 𝑥 = −1, we have that 𝑔(𝑦) = 𝑓(−1, 𝑦) has 𝑔′(𝑦) = 2(𝑦 − 1). For
𝑦 < 1, this derivative is always negative. Hence, any point (𝑥, 𝑦) in the set lying on this
vertical line has 𝑓(𝑥, 𝑦) > 𝑓(−1, 1).

Now, consider any line given by 𝑦 = 𝑐𝑥 + 𝑐 + 1. Then, for 𝑔𝑐(𝑥) = 𝑓(𝑥, 𝑐𝑥 + 𝑐 + 1), we
have 𝑔′

𝑐(𝑥) = 2(𝑐 − 2𝑥)(𝑐(𝑥+ 1)+ 1−𝑥2). We must show that if 𝑐 ≥ −2 and if 𝑥 < −1 then
𝑔′

𝑐(𝑥) < 0 and if 𝑐 ≤ −2 and if 𝑥 > −1 then 𝑔′
𝑐(𝑥) > 0. (This is not hard to visualize, as you

just look at the line and what direction we need to move in)
Notice that generally we have that the derivative is zero when 𝑥 = −1, when 𝑥 = 𝑐/2,

or when 𝑥 = 1 + 𝑐.
Consider the first case. Then we have that 𝑐/2, 1+𝑐 ≥ −1, so that the derivative is only

zero when 𝑥 ≥ −1. This means in particular that because the derivative is a cubic with a
positive leading coefficient (2), the derivative is zero when 𝑥 is smaller than this first zero,
so that in particular for 𝑥 < −1 the derivative is negative.

In the second case we can apply similar logic. As 𝑐/2, 1 + 𝑐 ≤ −1, the derivative is only
zero when 𝑥 ≤ −1. This means that the derivative is positive when 𝑥 > −1, proving the
claim.

Example 2.2.4. Maximize 𝑓(𝑥, 𝑦) = 𝑥 + √𝑦 subject to the constraint that 𝑎𝑥 + 𝑏𝑦 = 𝑐.
What do you notice?

Summary: Equality constraints represent the first digression from the standard optimiza-
tion. Here we are restricting to a smaller subset (of dimension 𝑛 − 𝑝) and then applying
our same methods. If, in order to increase the value of the function we need to leave the
subspace, then we have a maximum. This is what the Lagrangian method is capturing.

2.3 Inequality Constraints
Men I Trust, Untourable Album

Here we introduce in more generality the inequality constraints of the above example.
The theorem above required us to be in a situation where we were looking at equality
constraints. The Kuhn-Tucker theory of this section extends that to inequality constraints.
I want to emphasize that there is literally zero difference between this theory and that
theory, except that this gives the notation in a little more generality, and we need to be a
little bit more careful about directions here.
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Before I introduce the theorems themselves, I want to explain a little what I mean by the
similarities between his and that theory. When we are dealing with inequality constraints,
at any individual point 𝑥 we are dealing with some constraints that are binding (𝑔𝑖 = 0),
and some constraints that are not binding (𝑔𝑖 < 0).

Let us now think locally about the constraint set at 𝑥. Each binding constraint at 𝑥
restricts us to a subspace of one lower dimension (this is just the implicit function, following
exactly from the previous section). On the other hand, if a constraint is not binding, then
we know that locally around 𝑥 it is also not going to be binding. This means that we can
in some sense ignore them when looking at the point 𝑥.

A good first guess is that we just need to iterate over the different combinations of
constraints, see which are binding and which are not, then just double-check to make sure
that we are on the correct side of the non-binding constraints. This naive approach is
actually pretty close to what we need to do. However, there is an additional subtlety here,
in that we can always move into one of the binding constraints being non-binding. This
comes back to the direction to which our gradient is pointing. It is not now enough that it
is orthogonal to our constraint set, it must also be pointing out of our set (draw a picture!).

These two constraints form the additional basis that we need for the general Kuhn-Tucker
theory. They are the “Complementary Slackness” condition, and the “Sign” condition on
the multipliers. We summarize these ideas in the below theorem. Notice that the proof
follows from (1) the proof in the equality condition case and (2) the discussion above.
Theorem 2.3.1. Suppose that we aim to maximize the function 𝑓(𝑥) on the set defined by
𝑔(𝑥) ≤ 0 (with 𝑔 ∶ ℝ𝑛 → ℝ𝑝). Then if 𝑥 is a local maximum of the problem and 𝐷𝑔 is full
rank at 𝑥, there exists a 𝜇 ∈ ℝ𝑝 such that

1. ∇𝑓(𝑥) = 𝜇 ⋅ 𝐷𝑔

2. 𝜇 is non-negative.

3. 𝜇𝑖𝑔𝑖(𝑥) = 0.
The first condition is exactly the same as the above theorem. The second condition is

just the observation that we need ∇𝑓 to be pointing out of the set. The final condition is
that we need to ignore constraints that aren’t binding.

A note on signs. It can be difficult to remember, for me at least, what conditions on the
sign are required. For example, the condition is often written differently, as instead

∇𝑓(𝑥) + 𝜇 ⋅ 𝐷𝑔 = 0

This would then flip the condition and require that 𝜇 is non-positive. In general, it comes
down to personal preference; as long as you are internally consistent and know what you
are doing then however you write it is fine.

I like my notation because I think that it emphasizes the geometric interpretation. Specif-
ically, it frames the condition as ∇𝑓 being in the cone generated by all of the ∇𝑔𝑖 (because
the condition is explicitly writing it as a linear combination of these vectors). Because we
are looking at a case when 𝑔(𝑥) ≤ 0, we have that ∇𝑔𝑖 is pointing out of the constraint set.
Hence, we need ∇𝑓 to be in the same direction as these vectors. If it were in the opposite
direction, we could increase the objective by moving into the constraint set. This is exactly
why we need 𝜇 ≥ 0. Rewriting things in different ways (i.e., 𝑔 ≥ 0, or having them both be
on the same side) comes down to whether we need 𝑓 pointing in the same direction as the
constraint gradients or opposite.
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A note on the importance of being full-rank. That 𝐷𝑔 is full rank is even more
important now than before. If 𝑔 isn’t full rank, then it can be hard to determine whether
what is or is not a feasible direction. Consider 𝑔(𝑥) = 𝑥2 compared to 𝑔(𝑥) = −𝑥2.

2.3.1 Feasible Directions and Sufficient Conditions
It is useful to think about the above conditions as being slight generalizations of the condi-
tions listed in Section 2.1. In that section, our conditions for local maxima require that we
if we move along any direction, the value of the objective function decreases. The conditions
in Sections 2.2 are just the same, except there we need to restrict our movement to be only
along the zero-set of the constraint. In this section, the dimension of the manifold in general
changes, so we need to be a little more careful about which directions to which we can move.

It is perhaps useful to think about this in terms of feasible directions, which were intro-
duced in Example 2.2.3.

Consider a point 𝑥 for which some of the constraints are binding, and some of the
constraints are not binding. Then, the directions that are going to be feasible to move from
𝑥 (picture) are going to be those points which exactly do not move in the directions of the
gradients of the binding constraints. By “feasible” I do not mean necessarily that they are
actually in the set (because if exactly tangent, then can still be outside), but that they form
the boundary of all points that are in the set (picture). Explicitly, we can define

ℱ(𝑥, 𝑔) ≔ {𝑧 ∈ ℝ𝑛| ⟨𝑧,∇𝑔𝑖⟩ ≤ 0, ∀𝑖 s.t. 𝑔𝑖(𝑥) = 0}

By the conditions above, we know that if any of these inequalities are strict then the function
will be strictly decreasing in direction 𝑧. This will be a first-order effect. If we are interested
in the second-order effects, then we need to consider what happens in directions where these
inequalities are all equalities. I.e., we focus on the set

Ω(𝑥, 𝑔) ≔ {𝑧 ∈ ℝ𝑛| ⟨𝑧,∇𝑔𝑖⟩ = 0, ∀𝑖 s.t. 𝑔𝑖(𝑥) = 0}

We have effectively isolated the directions along which the gradient of 𝑓 is neither increasing
nor decreasing. I.e., if we have that 𝑥 satisfies the necessary condition to be a local maximum,
then we will have that

Ω(𝑥, 𝑔) ⊆ {𝑧 ∈ ℝ𝑛| ⟨𝑧,∇𝑓⟩ = 0}

It turns out that these are exactly the directions for which we need to check that there is
no positive second-order effect.

First, we isolate the second-order effect. To do that, we write

ℒ(𝑥, 𝜇) = 𝑓(𝑥) − ⟨𝜇, 𝑔(𝑥)⟩

Theorem 2.3.2. If 𝑥 is a local maximum of the problem with corresponding multipliers 𝜇′,
then we must have that

⟨𝑧, 𝑧⟩∇2
𝑥ℒ(𝑥,𝜇′) ≤ 0, ∀𝑧 ∈ Ω(𝑥, 𝑔)

Theorem 2.3.3. If 𝑥 is such that there exist a valid 𝜇 (i.e., satisfying the complementary
slackness and sign conditions) such that

1. ∇𝑓(𝑥) − 𝜇 ⋅ 𝐷𝑔(𝑥) = 0
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2. ⟨𝑧, 𝑧⟩∇2
𝑥ℒ(𝑥,𝜇′) < 0, ∀𝑧 ∈ Ω(𝑥, 𝑔)

then 𝑥 is a strict local maximum.

Are these conditions useful? In practice, not really, because they are so tedious to check.
We need to first go through the motions of calculating the multipliers, then calculating the
feasible directions (in higher dimensions this is basically infeasible), then calculating the
value of the adjusted inner product. So, we would like conditions that help us to get around
this in general. This remains the goal of the next section.

Summary: This is the same as before, except now we need to do a little more accounting
in terms of signs (reflecting directions of relaxation). Sufficient conditions become tedious
to check, but are possible to determine.

2.3.2 Examples
Example 2.3.1. Maximize 𝑓(𝑥, 𝑦) ∶= 𝑥 +√𝑦 subject to

𝑔(𝑥, 𝑦) ≔ ⎛⎜
⎝

𝑎𝑥 + 𝑏𝑦 − 𝑐
−𝑥
−𝑦

⎞⎟
⎠

How does this differ from Example 2.2.4? Do we need to consider some cases here?

Example 2.3.2. Consider the problem

max 𝑓(𝑥, 𝑦) = 𝑥𝑦

subject to the constraints

𝑔(𝑥, 𝑦) =𝑥 + 𝑦 ≤ 1
ℎ(𝑥, 𝑦) =𝑥2 + 𝑦2 − 1 = 0

(a) Which feasible points have full-rank derivative for the constraints?

(b) Find the candidate(s) for maximizer.

(c) Are the second order condition satisfied at the points you found in part (b)?

(d) Find the maximizer for this problem. Is it a global maximum (on the constraint set)?

Solution.

(a) Notice that ∇𝑔 = (1
1) and ∇ℎ = (2𝑥

2𝑦). As ∇ℎ ≠ 0, if 𝑔 is inactive, every feasible

point is regular. So we must have, for a point to be non-regular, that 𝑥 = 𝑦 and 𝑔
being active. The only points on the unit circle that have 𝑥 = 𝑦 are with 𝑥 = ±

√
2

2 ,
and 𝑔 is not active at (±

√
2

2 , ±
√

2
2 ) (for the positive point, it isn’t feasible, and it isn’t

active at the negative point). Hence all feasible points are regular.
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(b) We have, using the Kuhn-Tucker method, that we have at a local minimum

(𝑦
𝑥) + 2𝜆(𝑥

𝑦) + 𝜇(1
1) = 0

where 𝜇(𝑥+𝑦−1) = 0 and 𝜇 ≤ 0 (we are maximizing, and they are on the same side).
When 𝑔 is active, on the unit circle we have 𝑥 = 1 − 𝑦 and 𝑥2 + 𝑦2 = 1, so that either
𝑥 = 1, 𝑦 = 0 or 𝑥 = 0, 𝑦 = 1. In either case we have 𝑓 = 0, so these are clearly not
local maximums.
If 𝑔 is inactive, our situation reduces to 𝑦 = 2𝜆𝑥 and 𝑥 = 2𝜆𝑦. Hence 𝑦 = 4𝜆2𝑦, so that
𝜆 = ±1/2. If it is positive, then 𝑥 = 𝑦, so that 𝑥 = 𝑦 = −

√
2

2 . If it is negative, we have
𝑥 = −𝑦, so that we are at (±

√
2

2 , ∓
√

2
2 ). These are our candidates for a maximum.

(c) In the first case (−
√

2
2 , −

√
2

2 ), we want to have ∇2𝑓 + 1
2∇2ℎ = (0 1

1 0) + (1 0
0 1) is

negative semi-definite (as we are maximizing) on

𝑇
( −

√
2

2 , −
√

2
2 )

𝑆1 = span{( 1
−1)}

As we have
(1 1
1 1)( 1

−1) = 0

we have that the second order necessary condition is satisfied as well for this point.
In the other cases, we have 𝜆 = −1/2, and the tangent space is given by

span{(1
1)}

We have then by the same computation that

(−1 1
1 −1)(1

1) = 0

So that these points also satisfy the second order necessary condition of being negative
semi-definite.

(d) The maximizer is (−
√

2
2 , −

√
2

2 ) as the other two candidates give negative values so we
can reject them, and this gives a positive value. It is the maximize on the constrained
set (it is compact and this point is the only candidate, so it must be the max). It
is clearly not a global maximum on ℝ2 (consider the line 𝑦 = 𝑥 as 𝑥 → ∞, clearly
𝑓 is unbounded on this line). It is, however, the maximum on all of the circle, by
symmetry (its negative is also a maximum, but not in the constraint set).

This examples highlights a few things. First, it gives us another explicit computation of
the second order conditions. It also gives us an example of combining equality and inequality
constraints.

How does the problem change if we make the equality constraint on ℎ an inequality
constraint? Do we get another local maximum? Is it a global maximum?
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Example 2.3.3. Let 𝑄 be a 2 × 2 symmetric positive definite matrix, and let 𝑎, 𝑥 ∈ ℝ2.
Assume that the first entry of 𝑎, defined by 𝑎1, is less than zero. Consider the optimization
problem

min ⟨(𝑥 − 𝑎), (𝑥 − 𝑎)⟩𝑄

subject to the constraints

𝑥1 ≤ 𝑥2

−𝑥1 ≥ 𝑥2

Find the candidate(s) for minimizers using the First order conditions, and check whether
they satisfy the second order conditions.

Solution. Now, the Kuhn-Tucker conditions are

2𝑄(𝑥 − 𝑎) + 𝜇1 (
1
−1) + 𝜇2 (

1
1)

with 𝜇1(𝑥1 − 𝑥2) = 𝜇2(𝑥1 + 𝑥2) = 0 and 𝜇1, 𝜇2 ≥ 0. Notice that the Hessians of both our
inequality conditions are zero, as they are both linear. Hence, the second order condition
for any candidate will be satisfied, as the matrix in question will be 2𝑄, which is positive
definite on all of ℝ2, so any candidate that satisfies the first order conditions will be a local
minimum.

If neither of the two inequality constraints are active, we clearly have 𝑥 = 𝑎 as the point
satisfying our first order condition. Now, we must make sure that the inequality constraints
are satisfied. Hence, if we have 𝑎1 ≤ 𝑎2 and −𝑎1 ≥ 𝑎2, i.e., 𝑎2 ∈ [𝑎1, −𝑎1] (which is possible,
as 𝑎1 < 0), then 𝑥 = 𝑎 is our minimum.

Now, suppose that we have the first condition as active (that is, 𝑥1 = 𝑥2), but not the

second condition. If this is the case, let 𝑄 = (𝑑 𝑏
𝑏 𝑐), so that our condition becomes

𝑑(𝑥1 − 𝑎1) + 𝑏(𝑥2 − 𝑎2) + 𝜇1 = 0
𝑏(𝑥1 − 𝑎1) + 𝑐(𝑥2 − 𝑎2) − 𝜇1 = 0

This yields (after adding), as 𝑥1 = 𝑥2, we have

𝑑(𝑥1 − 𝑎1) + 𝑏(𝑥1 + 𝑥2 − 𝑎1 − 𝑎2) + 𝑐(𝑥2 − 𝑎2) = 0
(𝑑 + 2𝑏 + 𝑐)𝑥1 = 𝑑𝑎1 + 𝑏(𝑎1 + 𝑎2) + 𝑐𝑎2

𝑥1 = 𝑥2 = 𝑑𝑎1 + 𝑏(𝑎1 + 𝑎2) + 𝑐𝑎2
𝑑 + 2𝑏 + 𝑐

Note that after substituting into the equation, we find that 𝜇1 = (𝑐𝑑−𝑏2)(𝑎1−𝑎2)
𝑑+2𝑏+𝑐 . I claim

that this is positive only when 𝑎1 > 𝑎2. This is because 𝑄 positive definite, so that

𝑐𝑑 − 𝑏2 > 0. And, taking 𝑥 = (1
1), we have 𝑥𝑇𝑄𝑥 = 𝑑 + 2𝑏 + 𝑐 > 0. Hence, 𝜇1 > 0

if and only if 𝑎1 > 𝑎2. Now we need this point to be negative (so that the other condition
holds). That is, we need (𝑑 + 𝑏)𝑎1 + (𝑐 + 𝑏)𝑎2 < 0.
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If only the second condition is active, we have 𝑥1 = −𝑥2. This yields

𝑑(𝑥1 − 𝑎1) + 𝑏(𝑥2 − 𝑎2) + 𝜇2 = 0
𝑏(𝑥1 − 𝑎1) + 𝑐(𝑥2 − 𝑎2) + 𝜇2 = 0

This yields (after subtracting), as 𝑥1 = −𝑥2, we have

𝑑(𝑥1 − 𝑎1) + 𝑏(−𝑥1 + 𝑥2 + 𝑎1 − 𝑎2) − 𝑐(𝑥2 − 𝑎2) = 0
(𝑑 − 2𝑏 + 𝑐)𝑥1 = 𝑑𝑎1 − 𝑏(𝑎1 − 𝑎2) + 𝑐𝑎2

𝑥1 = −𝑥2 = 𝑑𝑎1 − 𝑏(𝑎1 − 𝑎2) − 𝑐𝑎2
𝑑 − 2𝑏 + 𝑐

This yields 𝜇2 = (𝑐𝑑−𝑏2)(𝑎1+𝑎2)
𝑑−2𝑏+𝑐 . This is positive exactly when 𝑎1 > −𝑎2. This is as in the

first case, taking 𝑥 = ( 1
−1).

Hence, in each of the three possibilities (𝑎2 < 𝑎1, 𝑎2 ∈ [𝑎1, −𝑎1], 𝑎2 > −𝑎1), we have
exactly one candidate for a local minimum, which by the second order condition is the local
minimum. We need this point to be negative (so that the other condition holds). That is,
we need (𝑑 − 𝑏)𝑎1 + (𝑏 − 𝑐)𝑎2 < 0.

If both conditions are active, we have that the only possible point is (0, 0). Here, we
must have that

−2𝑄𝑎 + 𝜇1 (
1
−1) + 𝜇2 (

1
1)

This becomes
(−2(𝑑𝑎1 + 𝑏𝑎2) + 𝜇1 + 𝜇2
−2(𝑏𝑎1 + 𝑐𝑎2) − 𝜇1 + 𝜇2

) = (0
0)

This is just a linear system of equations, and yields 𝜇1 = 1
2 ((𝑑 − 𝑏)𝑎1 + (𝑏 − 𝑐)𝑎2) and

𝜇2 = 1
2 ((𝑑 + 𝑏)𝑎1 + (𝑏 + 𝑐)𝑎2). Now, these 𝜇𝑖 are both positive, only when the candidates

for the local min with one active condition are not feasible (see the conditions above!).
Hence, we get the following candidates for local minima, with different cases. The second
order condition for each of these points is satisfied.

𝑥1 = 𝑥2 = 𝑑𝑎1 + 𝑏(𝑎1 + 𝑎2) + 𝑐𝑎2
𝑑 + 2𝑏 + 𝑐 if 𝑎1 > 𝑎2 and (𝑑 + 𝑏)𝑎1 + (𝑐 + 𝑏)𝑎2 < 0

𝑥1 = −𝑥2 = 𝑑𝑎1 − 𝑏(𝑎1 − 𝑎2) − 𝑐𝑎2
𝑑 − 2𝑏 + 𝑐 if 𝑎2 > −𝑎1 and (𝑑 − 𝑏)𝑎1 + (𝑐 − 𝑏)𝑎2 < 0

(0, 0) if (𝑑 + 𝑏)𝑎1 + (𝑐 + 𝑏)𝑎2 > 0 and (𝑑 − 𝑏)𝑎1 + (𝑐 − 𝑏)𝑎2 > 0
and 𝑎2 ∉ [𝑎1, −𝑎1]

𝑥 = 𝑎 if 𝑎2 ∈ [𝑎1, −𝑎1]

This is a tedious example perhaps, so not worth it to go through all of the algebra.
However, I think that it is still useful to discuss the different cases. Draw a picture, and
skip over most (all?) of the algebra.
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2.4 Concavity and Quasi-Concavity
Gabrielle Shonk, Across the Room

As it stands, our approach has to be find all local maxima and compare them. This can
be time-consuming, and also require numerically comparing values that may be nontrivial
to compute. This, as well as some of the discussion above, motivates that we should look
for conditions on our functions such that finding local maxima will be equivalent to finding
global maxima.

It turns out that what we want is concavity. Recall the definition of concavity:

Definition 2.4.1. We say that a function 𝑓 ∶ 𝑈 → ℝ is concave, for 𝑈 convex, if for all
𝑥, 𝑦 ∈ 𝑈 and 𝜆 ∈ (0, 1) we have that

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)

We say that 𝑓 is strictly concave if the above inequality is strict whenever 𝑥 ≠ 𝑦.

There is an equivalent definition that requires that the subgraph of 𝑓 be convex in 𝑈×ℝ,
but it is obvious that the definitions are equivalent.

Recall that a function being concave implies that the tangent space to a function at any
point lies above the graph of the function. Indeed, that is the defining trait of differentiable
concave functions.5 There is also a characterization in terms of its Hessian.

Lemma 2.4.2. Let 𝑓 ∶ 𝑈 ∶ ℝ, with 𝑈 convex, with 𝑓 twice differentiable. Then

1. 𝑓 is concave if and only if ∇2𝑓 is negative semi-definite for all 𝑥 ∈ 𝑈

2. If ∇2𝑓 is negative definite for all 𝑥 ∈ 𝑈, then 𝑓 is strictly concave.

Notice that the second is not an if and only if, as the Hessian can have some zero
eigenvalues and have the function be strictly concave. For example, consider 𝑓(𝑥) = −𝑥2.
You should already have learned that. If you didn’t then that is bad.

Regardless, this characterization in terms of the Hessian is extremely useful. Notice that
the necessary second-order conditions always required that the (sometimes constrained)
Hessian was negative semi-definite. If we assume that 𝑓 is concave, then we will always
have this condition be satisfied. Similarly, if we have that 𝑓 is strictly concave, then the
second-order portion of the sufficient condition is always going to be satisfied. Concavity is
nice!

Notice that this second-order nature holds in the Kuhn-Tucker problem if we make each
𝑔𝑖 convex.6 There, we would have that the Hessian of ℒ remains negative semi-definite
because we would be subtracting positive semi-definite matrices.

The other (more important) benefit of having 𝑔 be convex is that then 𝑔−1((−∞, 0])
will be a convex set. This means that we can really utilize the concavity of 𝑓 on the whole
domain in question (draw a picture?).7

So now, we are going to restrict our attention to looking at optimization problems of the
type (𝑓, 𝑔), where we have that 𝑓 is concave and 𝑔𝑖 is convex.

5There is an analogous notion for non-differentiable concave functions. See below, if we have time.
6Herein lies the difficulty with the convention that I take 𝑔 ≤ 0 to be the constraint set, as opposed to

𝑔 ≥ 0. If I did the latter, then we would want the 𝑔𝑖 to be concave. Like many of these things, it comes
down to personal preference.

7Maybe also discuss what is star convexity, and how that is not enough for our purposes.
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Aside: Is this assumption useful? Of course, computationally these assumptions move
us forward—that is why we are making them. But, are they too restrictive? In general,
concavity (or its weaker counter-part quasi-concavity) is assumed very frequently across
fields in economics, because the computational traction that it gives is useful. Also see
below Section ??. For example, OLS is a concave optimization problem.

We get some quick results from this discussion

Theorem 2.4.3. Let 𝑥 be a local maximum of the concave optimization problem (𝑓, 𝑔).
Then 𝑥 is a global maximum.

Note that we very much need that 𝑔 is also convex. If it were not, then we could do
wacky things (draw a picture).

We get some other trivial results:

Corollary 2.4.4. In the convex optimization problem (𝑓, 𝑔), the set of all maxima is convex.

Corollary 2.4.5. Let 𝑓 be a concave function. Then 𝑥 ∈ ∫(𝑈) is a maximum if and only
if ∇𝑓(𝑥) = 0.

This is just an observation of what we said above regarding the second-order conditions.
Before we state the full generalization of the results above, we need one regularity con-

dition in order to guarantee that the function 𝑔 is not too restrictive.

Definition 2.4.6. Let 𝑔 be a convex function. If there exists an 𝑥 ∈ ℝ𝑛 such that 𝑔(𝑥) ≪ 0,
then 𝑔 is said to satisfy Slater’s Condition.

With this minor regularity condition, we get the following:

Theorem 2.4.7. Let (𝑓, 𝑔) be a concave optimization problem. If 𝑔 satisfies Slater’s Con-
dition, then 𝑥 is a maximum if and only if there exists a 𝜇 ≤ 0 such that

1. ∇𝑓(𝑥) + 𝜇 ⋅ 𝐷𝑔(𝑥) = 0

2. 𝜇𝑖𝑔𝑖(𝑥) = 0

Again, this is just a description of what we had noticed above, that concavity gives us
only a need to check first-order conditions.

2.4.1 Examples
APM462 I think will be useful?. Alberto’s notes are probably going to be fairly useful for
this. MWG also?

2.4.2 Expected Utility Theory
How do we think about concave and convex functions? In economics they come up all of
the time. Specifically, we like to think of them in terms of decreasing returns to scale and
what is called “risk” aversion.

Throughout this section, I have been abstractly saying that the agent has some objective
that they are trying to maximize. Let us call that objective 𝑢(𝑥). Until now, there was
no uncertainty in the agent’s outcome. If they choose 𝑥, then they get 𝑢(𝑥). However,
the economic situations in which we are most interested have uncertainty. If I am deciding
between two crops to plant, my optimal choice will likely depend on the amount of rain
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that we get throughout the summer, or when is the first frost. But when I am making the
choice, I do not know the answers to those questions.

As economists, how do we model the agent’s optimal choice in this setting? It is already
a stretch to assume that we know the agent’s optimal choice in the absence of uncertainty.
How the agent aggregates across uncertainty is even harder to reasonably know.

Instead, we often make a very unrealistic assumption that the agent aggregates linearly
across uncertainty. If there are two possible “states” (Rainy, Sunny) that are equally likely,
then we assume that the agent’s utility from planting Canola is given by

1
2𝑢(𝐶,𝑅) + 1

2𝑢(𝐶, 𝑆)

Why is concavity useful here? Suppose that our objective is actually of the following
form:

𝑢(𝑦(𝑝, 𝑤))

where 𝑦 is the yield of a crop, 𝑝 is the crop that we plant, and 𝑤 is the weather. If 𝑢
is concave, then we are “risk averse:” if we are deciding between wheat and canola, and on
average they give the same yield, then we will prefer to plant the crop that is less dependent
on the weather (in this case, wheat). Why is this? (draw a picture). Concavity gives us a
powerful tool for modelling preferences for stability.

This also has implications for smoothing consumption across periods in intertemporal
models, decreasing returns to scale, and other settings.

2.4.3 Non-differential Convex Optimization
We have this general theorem for all concave functions defined on an open set:

Theorem 2.4.8. If 𝑓 ∶ 𝑈 → ℝ is concave, then 𝑓 is differentiable almost everywhere and
∇𝑓 is continuous almost everywhere.

First, questions about “almost everywhere” will have to wait until we cover measure
theory. For now, just think about this being a really really small set.

So, in any compact interval, there are going to be few points at which our function of
interest is not going to be differentiable. In a somewhat surprising turn, our theory can be
somewhat extended to cover these cases.

What we need to do is look at what the defining characteristic of the derivative is, and
then try to extend it to our situation. For any one-dimensional function, the derivative
defines the slope of the tangent line at a point. In turn, the tangent line is the line that lies
either entirely below or entirely above the function in a neighbourhood of the point.

Because convex functions are continuous on any open set, we can define the “sub-
differential” to be the set of all slopes whose corresponding lines lie entirely under the
graph of the function. This is going to be the definition that we want to use for our theory.
A sub-differential is a generalization of the gradient to non-differentiable convex functions.

Definition 2.4.9. Let 𝑓 ∶ ℝ𝑛 → ℝ be convex. The vector 𝑔 ∈ ℝ𝑛 is a sub-differential (or
sub-gradient) of 𝑓 at 𝑥0 if, for all 𝑥 ∈ ℝ𝑛 we have that

⟨𝑔, 𝑥 − 𝑥0⟩ ≤ 𝑓(𝑥) − 𝑓(𝑥0)
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Proposition 2.4.10. If 𝑓 ∶ ℝ𝑛 → ℝ is convex, then a sub-differential exists at every point
in ℝ𝑛.

Proof. Left as an exercise (Exercise 5.2.13).

In that exercise you will also use the sub-gradient to prove some nice results. The
following proposition shows how the sub-differential relates to the gradient of 𝑓 when 𝑓 is
differentiable.

Proposition 2.4.11. Let 𝑓 be convex. Then, 𝑓 is differentiable at 𝑥0 if and only if there is
a unique sub-differential at 𝑥0. Moreover, this sub-differential is equal to ∇𝑓(𝑥0).

Proof. See Exercise 5.2.13.

In terms of optimizing, the conditions are exactly the same, we just have to be careful
about the directions that we can move.

In the unconstrained case, we can use the example of |𝑥| as a motivator:

Lemma 2.4.12. Suppose that 𝑓 is a convex function defined on an open set. Then if 𝑓 has
a minimum at 𝑥, we have that

0 ∈ 𝜕𝑓

Notice that we just need 0 to be in the sub-differential, we can have that other vectors
lie in the set.

When we move to the constrained case we get a similar condition:

Theorem 2.4.13 (First order Necessary Condition for Minimum). Suppose that 𝑓 is convex,
and 𝑔𝑖 are convex. Consider the maximization problem

min 𝑓(𝑥)

Subject to

𝑔𝑖(𝑥) ≤ 0, for all 𝑖

Then if 𝑥 is a local minimum of 𝑓 on the constraint set, there exists a 𝜇 ≤ 0 and a vector
𝑣 ∈ 𝜕𝑓(𝑥) such that

𝑣 ∈ ∑𝜇𝑖𝜕𝑔𝑖(𝑥)

When we are looking for maximizers, we need to be more careful. Because of the convex-
ity of the lower level sets of 𝑓, we have additional movement for which we need to account.
The condition becomes as follows.

Theorem 2.4.14 (First order Necessary Condition for Maximum). Suppose that 𝑓 is convex,
and 𝑔𝑖 are convex. Consider the maximization problem

max 𝑓(𝑥)

Subject to

𝑔𝑖(𝑥) ≤ 0, for all 𝑖

Then if 𝑥 is a local maximum of 𝑓 on the constraint set, for each 𝑣 ∈ 𝜕𝑓(𝑥), we have that
there exist 𝜇𝑖 satisfying complementary slackness and sign conditions such that

𝑣 ∈ ∑𝜇𝑖𝜕𝑔𝑖(𝑥)
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This isn’t a super important section, but it is interesting and I like it. The following
examples highlight in practice how these tools can be used

Example 2.4.1. Consider the following optimization problem:

min 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦

subject to

𝑔(𝑥, 𝑦) = |𝑥 − 2| + |𝑦 + 3| − 1 ≤ 0

(a) Find the subdifferentials of 𝑓 and 𝑔.

(b) Solve the minimization problem using subdifferentials.

(c) Draw a diagram in ℝ2 of the feasible set 𝑔 ≤ 0 and the level sets of 𝑓.

(d) Is there a way to frame the problem in terms of differentiable functions?

Solution. (a) As 𝑓 is differential, we know exactly that 𝜕𝑓 = {∇𝑓} = {(2𝑥
−1)}. Now, as

𝑔 is the sum of a function 𝑞(𝑥) = |𝑥 − 2| and a function 𝑝(𝑦) = |𝑦 + 3| − 1, we have
that 𝜕𝑔 = 𝜕𝑞 × 𝜕𝑝. Hence, we have that

𝜕𝑔(𝑥, 𝑦) =

⎧
{{{{{{{
⎨
{{{{{{{
⎩

{(−1,−1)} if 𝑥 < 2, 𝑦 < −3
{−1} × [−1, 1] if 𝑥 < 2, 𝑦 = −3
{(−1, 1)} if 𝑥 < 2, 𝑦 > −3
[−1, 1] × {−1} if 𝑥 = 2, 𝑦 < −3
[−1, 1]2 if 𝑥 = 2, 𝑦 = −3
[−1, 1] × {1} if 𝑥 = 2, 𝑦 > −3
{(1,−1)} if 𝑥 > 2, 𝑦 < −3
{1} × [−1, 1] if 𝑥 > 2, 𝑦 = −3
{(1, 1)} if 𝑥 > 2, 𝑦 > −3

(b) We first check to see if there is a minimum on the interior, that is, where 𝜕𝑓 ∋ 0.
Now, this cannot happen, as −1 ≠ 0.

Hence, we know that the minimum occurs somewhere on the boundary, where we have

a minimum when −∇𝑓 ∈ 𝜆𝜕𝑔, where 𝑔 = 0 and 𝜆 > 0. As −∇𝑓 = (−2𝑥
1 ), we must

have that 𝑦 ≥ −3 (so that the second term could be positive). As 𝑥 ≥ 1 (so that the
first term in the gradient of 𝑓 is negative), we must also have that 𝑥 ≤ 2 (so that the
first term in a subgradient of 𝑔 could be negative).

Now, if 𝑥 = 2, we must have that, to be on the boundary, 𝑦 = −2, so that (−4
1 ) ∉

𝜆[−1, 1] × {1}.
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If 𝑥 < 2, 𝑦 = −3, the only boundary point is (1,−3). In order to have (−2
1 ) ∈

𝜆{−1} × [−1, 1]}, we could have 𝜆 = 2. But notice then that we have −∇𝑓 ∈ 𝜆𝜕𝑔, so
that this point is a minimizer. This completes the question; (1,−3) is the minimizer.

(c) This does agree with our conclusion, as the left corner is at (1,−3).

(d) Yes!

Example 2.4.2. Solve the following convex minimization problem:

min 𝑓(𝑥, 𝑦) = max {|𝑥|, 𝑦 + 4}

subject to

𝑔1(𝑥, 𝑦) =(𝑥 − 1)2 + (𝑦 − 1)2 − 1 ≤ 0
𝑔2(𝑥, 𝑦) =|𝑥| + 𝑦 − 𝑏 ≤ 0

Notice that the answer should depend on 𝑏 > 0!

Solution. We first compute the subdifferential of 𝑓. Notice that 𝑓(𝑥, 𝑦) = max{𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦)},
where 𝑓1(𝑥, 𝑦) = |𝑥| and 𝑓2(𝑥, 𝑦) = 𝑦 + 4. We have then that

𝜕𝑓1(𝑥, 𝑦) =
⎧{
⎨{⎩

{(−1, 0)} if 𝑥 < 0
[−1, 1] × {0} if 𝑥 = 0
{(1, 0)} if 𝑥 > 0

𝜕𝑓2(𝑥, 𝑦) = {(0, 1)}

However, consider that on the ball (𝑥 − 1)2 + (𝑦 − 1)2 − 1 ≤ 0, we have that 0 ≤ 𝑥 ≤ 2
and 0 ≤ 𝑦 ≤ 2, so that 𝑦 + 4 > |𝑥|. This means that on the area of interest, we will have
that 𝜕𝑓(𝑥, 𝑦) = {(0, 1)} always.

Now, consider that on the area of interest we have

𝜕𝑔1(𝑥, 𝑦) = (2(𝑥 − 1)
2(𝑦 − 1))

𝜕𝑔2(𝑥, 𝑦) = {[−1, 1] × {1} if 𝑥 = 0
{(1, 1)} if 𝑥 > 0
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Notice that we can drop the case where 𝑥 < 0 here because we know that given the first
constraint we have 𝑥 ≥ 0.

Now, consider that as the subdifferential contains only one vector, and this vector is
always non-zero, we know that we will have a solution only on the boundary. In what
follows, 𝜆1, 𝜆2 are arbitrary non-negative scalars

We check when ( 0
−1) ∈ 𝜆1𝜕𝑔1(𝑥, 𝑦). Then, as 𝜆1 ≠ 0 clearly, we must have 𝑔1 = 0 with

the first entry of the vector in the subdifferential being 0, so that 𝑥 = 1. If 𝑦 = 2, then
the second entry will always be positive, which is not allowable. However, if 𝑦 = 0, then

( 0
−1) ∈ 2𝜕𝑔1(1, 0). So, if we have 𝑏 ≥ 1, (i.e., (1, 0) is feasible) then (1, 0) is a minimizer

for 𝑓 on the set of interest.

Notice that we never have ( 0
−1) ∈ 𝜆2𝜕𝑔2(𝑥, 𝑦), as each vector in 𝜕𝑔2(𝑥, 𝑦) has a positive

second entry. Hence, all that is left to check is when ( 0
−1) ∈ 𝜆1𝜕𝑔1(𝑥, 𝑦) + 𝜆2𝜕𝑔2(𝑥, 𝑦).

First, if 𝑥 = 0 we have that 𝑦 = 1. Here, elements of this sum take the form

(−2𝜆1 + 𝜆2𝑤
𝜆2

) ,𝑤 ∈ [−1, 1]

Notice that the second term can never be negative, so that we have no minimum here.
Now, if 𝑥 > 0, as 𝑔2(𝑥, 𝑦) = 0 in this scenario, that elements of this sum take the form

(2𝜆1(𝑥 − 1) + 𝜆2
2𝜆1(𝑦 − 1) + 𝜆2

)

Now, as we need the second term to be negative while the first term needs to be zero, we
need 1 ≥ 𝑥 > 𝑦.

Notice that when 𝑥 > 0, both of our constraints are symmetric in terms of 𝑥, 𝑦. Solutions
are explicitly given by 𝑥 = 𝑏 − 𝑦, so that (from 𝑔1) we have 𝑥 = 2𝑏±√−4𝑏2+16𝑏−8

4 . Note

this means that our values of 𝑦 are 𝑦 = 2𝑏∓√−4𝑏2+16𝑏−8
4 . Now, we will have 𝑥 be the

larger of the two, so that if −4𝑏2 + 16𝑏 − 8 > 0 (corresponds to 𝑏 > 2(1 −
√

2
2 ), and

𝑥 = 2𝑏±√−4𝑏2+16𝑏−8
4 ≤ 1 (corresponds to 𝑏 ≤ 1, by easily expanding), our minimizer is given

exactly by

𝑥 = 2𝑏 +√−4𝑏2 + 16𝑏 − 8
4

𝑦 = 2𝑏 −√−4𝑏2 + 16𝑏 − 8
4

If 𝑏 ≥ 1, then our minimizer is given as in the part above, (1, 0).

Now, all of these calculations have been assuming that Slater’s condition is satisfied.
That is exactly the case when 𝑏 is larger than the smaller root of the quadratic −4𝑏2+16𝑏−8
(because when this quadratic is first zero, it intersects the circle only once). This corresponds
to 𝑏 = 2(1 −

√
2

2 ). Here we cannot use subdifferentials, but because there is only one point

in our constraint set: (1 −
√

2
2 , 1 −

√
2

2 ); this point is clearly the minimizer.
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Duality
In the future, it is probably good to have a section on this. For this though, we probably
do need an introduction to linear programming.

2.5 Parametric Optimization
Field Guide, Make Peace with That

Concavity gives us a lot of structure. It turns out that we can extend the structure
beyond a single optimization problem to a family of optimization problems. Suppose now
that we have a vector 𝜃 ∈ Θ that parameterizes our optimization problem. That is, our
primitives become two maps 𝑓 ∶ ℝ𝑛 × Θ → ℝ and 𝑔 ∶ ℝ𝑛 × Θ → ℝ𝑝 that are each twice
differentiable. The problem becomes

max𝑥 𝑓(𝑥, 𝜃) subject to
𝑔(𝑥, 𝜃) ≤ 0

Here, notice that as we are optimizing over 𝑥, 𝜃 is a fixed parameter of the problem. We
have that Θ ⊆ ℝ𝑚 is our parameter space. With this we will get a constraint set for each
𝜃 (denoted 𝐺(𝜃)), and also a solution set (denoted 𝒮(𝜃)) for each 𝜃.

Our goal is going to be to characterize 𝒮(𝜃) for each 𝜃, and then see how it varies as we
vary 𝜃. Notice that for fixed 𝜃 we can simply apply the tools that we have developed above.
It is the latter question that is more interesting for us to solve.

Now, recall some of the definitions corresponding to correspondences.

Definition 2.5.1. Let 𝐺 ∶ Θ ⇉ ℝ𝑚 be a correspondence. We say that 𝐺 is Compact-Valued
if 𝐺(𝜃) is a compact set for all 𝜃. We say that 𝐺 is Convex-Valued if 𝐺(𝜃) is a convex set
for all 𝜃.

Notice that these definitions are not about the graph of 𝐺, but just about its values at
a specific point. Also recall the definition of upper hemi-continuity.

Definition 2.5.2. Let 𝐺 be a correspondence. We say that 𝐺 is upper hemi-continuous
(uhc) at 𝜃 if for all sequences {𝜃𝑛} such that 𝜃𝑛 → 𝜃, and all sequences 𝑥𝑛 such that
𝑥𝑛 ∈ 𝐺(𝜃𝑛) there exists a subsequence 𝜃𝑛𝑘

and 𝑥 ∈ 𝐺(𝜃) such that 𝑥𝑛𝑘
→ 𝑥. We say that 𝐺

is uhc if it is uhc at each 𝜃

What this means is that limit points cannot simply disappear as we vary 𝜃. Another
way of thinking about this is, if 𝐺 is Compact-Valued and Θ is closed, then the graph of 𝐺
must be also be closed. We now state the corresponding definition of lower hemi-continuity.

Definition 2.5.3. Let 𝐺 be a correspondence. We say that 𝐺 is lower hemi-continuous (lhc)
at 𝜃 if for every sequence {𝜃𝑛} such that 𝜃𝑛 → 𝜃 and 𝑥 ∈ 𝐺(𝜃) there exists a subsequence
𝜃𝑛𝑘

and 𝑥𝑛𝑘
∈ 𝐺(𝜃𝑛𝑘

) such that 𝑥𝑛𝑘
→ 𝑥. We say that 𝐺 is lhc if it is lhc at each 𝜃

What this means is that limit points cannot simply appear (draw a picture, compare
with uhc). We also finally have the corresponding notion of continuity.

Definition 2.5.4. Let 𝐺 be a correspondence. We say that 𝐺 is continuous at 𝜃 if it is
both uhc and lhc at 𝜃. We say that 𝐺 is continuous if it is continuous at each 𝜃.
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With this (hopefully review) out of the way, we can start to state some results. First, we
do not impose concavity on the optimization problem for each 𝜃, we just impose continuity
restrictions.

Theorem 2.5.5 (Maximum Theorem). Let 𝑓 ∶ ℝ𝑛×Θ → ℝ be continuous and 𝐺 ∶ Θ ⇉ ℝ𝑛

be a compact-valued and continuous correspondence. Define

𝑣(𝜃) ≔max𝑥 𝑓(𝑥, 𝜃) s.t. 𝑥 ∈ 𝐺(𝜃)
𝒮(𝜃) ≔argmax

𝑥
𝑓(𝑥, 𝜃) s.t. 𝑥 ∈ 𝐺(𝜃)

Then we have that 𝑣(𝜃) is continuous on Θ and 𝒮 is a compact-valued uhc correspondence
on Θ.

This shouldn’t be too surprising actually, because the continuity of all of the objects
(and the compact-valued nature of 𝐺) ensures that nothing surprising happens when we
change 𝜃. When we additionally add concavity, then things start to become nicer.

Theorem 2.5.6 (Maximum Theorem with Concavity). Let 𝑓 ∶ ℝ𝑛×Θ → ℝ be continuous,
twice differentiable, and concave and let and 𝑔 ∶ ℝ𝑛×Θ → ℝ𝑝 be convex, twice differentiable,
and such that it implies that 𝐺 ∶ Θ ⇉ ℝ𝑛 is a compact-valued and continuous correspondence.
Define

𝑣(𝜃) ≔max𝑥 𝑓(𝑥, 𝜃) s.t. 𝑥 ∈ 𝐺(𝜃)
𝒮(𝜃) ≔argmax

𝑥
𝑓(𝑥, 𝜃) s.t. 𝑥 ∈ 𝐺(𝜃)

Then we have that 𝑣(𝜃) is a concave function Θ and 𝒮 is a compact-valued, convex-valued,
and uhc correspondence on Θ. If, in addition, 𝑓 is strictly concave, then 𝑣 is strictly concave
and 𝒮 is a continuous function on Θ.

These theorems are nice because they give us some structure on how 𝑣 and 𝒮 change when
we vary parameters. At the same time, it is not extremely useful in terms of determining
how the objective changes as we change these parameters. The next result tells us that the
result is actually quite intuitive. First-order effects are all that matter; we don’t need to
worry about how optimal choices change when we change the parameters.

Theorem 2.5.7 (Envelope). Let 𝑓 ∶ ℝ𝑛 ×Θ → ℝ be continuous, twice differentiable, and
concave and let and 𝑔 ∶ ℝ𝑛×Θ → ℝ𝑝 be convex, twice differentiable, and such that it implies
that 𝐺 ∶ Θ ⇉ ℝ𝑛 is a compact-valued and continuous correspondence that satisfies Slater’s
condition. Define again

𝑣(𝜃) ≔max𝑥 𝑓(𝑥, 𝜃) s.t. 𝑥 ∈ 𝐺(𝜃)

Then we have that

∇𝜃𝑣(𝜃) = (∇𝜃ℒ(𝑥, 𝜇, 𝜃))|𝑥=𝑥(𝜃),𝜇=𝜇(𝜃)

2.6 Functional Optimization
YOASOBI, THE BOOK/THE BOOK 28

8Am I cheating with this? Maybe, but they are both very short albums, and I make the rules.
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This is the least standard section for this part of the course. I do think that there are
times when it comes up in practice, and so I think it is worth spending some time on it.

Another name for this section is Calculus of Variations. We take a step away from what
we have done mostly through this chapter, and instead of maximizing in a finite number of
dimensions we now look at maximizing entire functions. However, I want to emphasize that
here, as above, the methods are going to be similar.

We (clearly) do not have time to go through an entire course on functional optimization.
Instead, I want to highlight some of the simple techniques and emphasize that there is
little difference between what we have done previously and what we are doing here. Things
become slightly more difficult with regards to terminology, and we will need to upgrade
our technical machinery, but the intuition for the techniques remains exactly the same.
Functional optimization is something that it is important to know about in my thinking (it
has applications in all of our fields of study).

Let us return to the material. We are interested in the following problem:

max
𝑢∈𝒜

ℱ[𝑢]

where ℱ is a “functional,” which is a function on the space of functions.

Example 2.6.1. Let 𝒜 ≔ {𝑢 ∶ [0, 1] → ℝ|𝑢 ∈ 𝒞1, 𝑢(0) = 𝑢(1) = 1}. That is, 𝒜 contains all
continuously differentiable functions on [0, 1] whose endpoints are exactly 1.

We would then write ℱ ∶ 𝒞1[0, 1] → ℝ. That is, ℱ takes continuously differentiable
functions defined on the interval and returns a value. What is the most common type of
functional that we see?

∘ Evaluation at a point, or some function of evaluations

∘ Evaluation of the derivative.

∘ Definite integration.

As one specific example, we could set

ℱ[𝑢] = −1
2 ∫

1

0
[𝑢2(𝑥) + (𝑢′)2(𝑥)] 𝑑𝑥

This problem can look extremely intimidating, because it is. So, what should our plan
be? As a proposal:

1. Derive some necessary 1st order conditions at a maximum

2. Find a 𝑢∗ that satisfies the necessary conditions

3. Verify that the candidate 𝑢∗ is indeed a maximum

Because the problem in its current form looks so difficult, it is going to be a good idea
to reduce the problem from one infinite-dimensional problem to (many) one-dimensional
problems.

Example 2.6.1 (continued). Consider the setup above. Fix some 𝑣 ∈ 𝒞1 such that 𝑣(0) =
𝑣(1) = 0. Notice that 𝑣 ∉ 𝒜, but it has the property that if 𝑢 ∈ 𝒜 then for all 𝑠 ∈ ℝ we
have that 𝑢 + 𝑠𝑣 ∈ 𝒜.
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Now, consider a 𝑢∗ that is a maximizer for ℱ. We must have that

ℱ[𝑢∗ + 𝑠𝑣] ≤ ℱ[𝑢∗]

So, if we define 𝑓(𝑠) ≔ ℱ[𝑢∗ + 𝑠𝑣], then we will have that 0 is a maximizer for 𝑓. (See how
we have started to convert the problem?) In particular, because 𝑓 is clearly differentiable
(it is in fact a polynomial), we have

𝑓 ′(0) = 0 ⇒ −1
2 ∫

1

0
2𝑣(𝑢∗ + 𝑠𝑣) + 2𝑣′(𝑢′

∗ + 𝑠𝑣′)𝑑𝑥∣
𝑠=0

= 0

In particular, we can rewrite this as the following condition

∫
1

0
𝑣𝑢∗ + 𝑣′𝑢′

∗𝑑𝑥 = 0 ∀ test functions 𝑣

If we further assume that 𝑢 ∈ 𝒞2, then we can use integration by parts to rewrite

∫
1

0
𝑣′𝑢′

∗𝑑𝑥 = 𝑣𝑢′
∗∣

1

0
−∫

1

0
𝑣𝑢″

∗𝑑𝑥

Plugging this back in, we have that a necessary condition is that

∫
1

0
𝑣(𝑢∗ − 𝑢″

∗ )𝑑𝑥 = 0

recall that this is for all test functions 𝑣. It is intuitive (we will formalize this in a minute)
that this implies that we get

𝑢∗ ≡ 𝑢″
∗

This of course gives us functions of the form 𝑎𝑒𝑥 + 𝑏𝑒−𝑥. Fitting our ending values gives us
a candidate of

𝑢∗(𝑥) =
1 − 𝑒−1

𝑒 − 𝑒−1 𝑒
𝑥 + 𝑒 − 1

𝑒 − 𝑒−1 𝑒
−𝑥

At this stage this is just a guess! But it is easy to show that in this case we get sufficiency.
If 𝑢∗ satisfies the conditions above, we have that

ℱ[𝑢∗ + 𝑠𝑣] = ℱ[𝑢∗] + 𝑑∫
1

0
[𝑢∗𝑣 + 𝑢′

∗𝑣′] 𝑑𝑥 + 𝑠2

2 ∫
1

0
[𝑣2 + (𝑣′)2] 𝑑𝑥 ≥ 𝐹[𝑢∗]

We want to formalize the above a little bit more.

Lemma 2.6.1. Let 𝑔 be continuous on [𝑎, 𝑏]. If ∫𝑏
𝑎 𝑔(𝑥)𝑣(𝑥)𝑑𝑥 = 0 for all 𝑣 test functions,

then we have that 𝑔 ≡ 0 on [𝑎, 𝑏].

Proof. Exercise. Have you ever heard of a bump function?
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We now turn to a more general class of problems. The set-up will be as follows:

𝒜 = {𝑢 ∶ [𝑎, 𝑏] → ℝ|𝑢 ∈ 𝒞1, 𝑢(𝑎) = 𝐴, 𝑢(𝑏) = 𝐵}

And we have that

ℱ[𝑢] = ∫
𝑏

𝑎
𝐿(𝑥, 𝑢(𝑥), 𝑢′(𝑥))𝑑𝑥

We call the function

𝐿(𝑥, 𝑧, 𝑝) ∶ [𝑎, 𝑏] × ℝ2 → ℝ

the “Lagrangian.” For notation, we will write

𝐿𝑧(𝑥, 𝑧, 𝑝) ≔
𝜕
𝜕𝑧𝐿(𝑥, 𝑧, 𝑝)

𝐿𝑝(𝑥, 𝑧, 𝑝) ≔
𝜕
𝜕𝑝𝐿(𝑥, 𝑧, 𝑝)

Unfortunately, because this is an entirely new problem, we need to introduce some new
notation. It will have analogues in the finite-dimensional case, I promise.

Definition 2.6.2. Let 𝑢 ∈ 𝒜. Suppose that there exists a function 𝑔𝑢 on [𝑎, 𝑏] such that

𝜕
𝜕𝑠 ∣𝑠=0

ℱ[𝑢 + 𝑠𝑣] = ∫
𝑏

𝑎
𝑔𝑢(𝑥)𝑣(𝑥)𝑑𝑥

for all test functions 𝑣. Then, we call 𝑔𝑢 the variational derivative of ℱ at 𝑢, and we denote
𝑔𝑢 by

𝜕ℱ
𝜕𝑢 (𝑢)(⋅) or 𝜕ℱ

𝜕𝑢 (𝑢)

How do we think of this? Well, it is really just the analogue of ∇𝑓 in the finite dimensional
case. What do I mean by this? Well, in finite dimensions, the gradient of a function is exactly
defined by the following property:

𝜕
𝜕𝑠 ∣𝑠=0

𝑓(𝑢 + 𝑠𝑣) = ∇𝑓(𝑢) ⋅ 𝑣 = ⟨∇𝑓, 𝑣⟩

The only difference here is that our inner product has changed. Instead of the simple dot
product in finite dimensions, we now contend with the integral.

Example (2.6.1) we had that 𝜕ℱ
𝜕𝑢 = 𝑢 − 𝑢″.

We can now state a generalization of the necessary condition that we derived in the
above example.

Lemma 2.6.3. Let 𝒜 = {𝑢 ∶ [𝑎, 𝑏] → ℝ|𝑢 ∈ 𝒞1, 𝑢(𝑎) = 𝐴, 𝑢(𝑏) = 𝐵}. Suppose that for 𝑢∗ ∈
𝒜, and all test functions 𝑣, we have that 𝑢∗ + 𝑣 ∈ 𝒜. Then, if 𝑢∗ maximizes ℱ on 𝒜,
𝜕ℱ
𝜕𝑢 (𝑢∗) exists and is continuous on [𝑎, 𝑏] and we have that 𝜕ℱ

𝜕𝑢 (𝑢∗) ≡ 0 on [𝑎, 𝑏].
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Proof. As 𝑢∗ + 𝑠𝑣 ∈ 𝒜, as 𝑢∗ maximizes, we have that ℱ[𝑢∗ + 𝑠𝑣] ≤ ℱ[𝑢∗]. Then, define
𝑓(𝑠) ≔ ℱ[𝑢∗ + 𝑠𝑣]. We have that 𝑓 ′(0) = 0. Because by definition 𝑓 ′(0) = ∫𝑏

𝑎
𝜕ℱ
𝜕𝑢 (𝑢∗)𝑣, we

are done. Proving existence formally requires a little more work, so I omit this.

If we put some structure on ℱ then we can get significantly stronger results.

Theorem 2.6.4. Let 𝒜 = {𝑢 ∶ [𝑎, 𝑏] → ℝ|𝑢 ∈ 𝒞1, 𝑢(𝑎) = 𝐴, 𝑢(𝑏) = 𝐵}. Suppose that we
can write

ℱ[𝑢] = ∫
𝑏

𝑎
𝐿(𝑥, 𝑢(𝑥), 𝑢′(𝑥))𝑑𝑥

for some Lagrangian 𝐿 ∈ 𝒞2.9 Then we have that 𝜕ℱ
𝜕𝑢 (𝑢) exists, is continuous, and given by

𝜕ℱ
𝜕𝑢 (𝑢)(𝑥) = − 𝜕

𝜕𝑥𝐿𝑝(𝑥, 𝑢, 𝑢′) + 𝐿𝑧(𝑥, 𝑢, 𝑢′)

This is called the Euler-Lagrange equation.

Proof. If we assume that 𝑢 ∈ 𝒞2 then the proof becomes a straightforward computation (so
I leave it as an exercise). Relaxing to 𝑢 ∈ 𝒞1 is much more difficult.

Example (2.6.1) Here we have that 𝐿 = 1
2 (𝑧2 + 𝑝2). Then we have that 𝐿𝑧 = 𝑧 and

𝐿𝑝 = 𝑝. So, we get that 𝜕ℱ
𝜕𝑢 (𝑢) = 𝑢 − 𝑢″.

Corollary 2.6.5. Let 𝑢∗ be a maximizer of ℱ on 𝒜, where ℱ is defined with a Lagrangian
𝐿 that is suitably smooth. Then we have that

− 𝜕
𝜕𝑥𝐿𝑝(𝑥, 𝑢∗(𝑥), 𝑢′

∗(𝑥)) + 𝐿𝑧(𝑥, 𝑢∗(𝑥), 𝑢′
∗(𝑥)) = 0

Example 2.6.2. One of my favourite examples. Let us show that the minimum (reasonably
smooth) distance between two points is a straight line.

Specifically, we have that

𝒜 = {𝑢 ∶ [𝑎, 𝑏] → ℝ|𝑢 ∈ 𝒞1}

ℱ[𝑢] = ∫
𝑏

𝑎
√1+ (𝑢′)2(𝑥)𝑑𝑥

We then have that

𝐿𝑧 ≡0

𝐿𝑝 ≡ 𝑝
√1 + 𝑝2

As we have that 𝐿𝑝 must be a constant (its derivative is zero), we have that the derivative
of any minimizer must be constant. Hence we get that 𝑢∗ = 𝛼𝑥 + 𝛽.

I will give a few exercises as problems, but the idea throughout is just to apply the same
techniques that we have developed here.

9I think this may be able to be relaxed to 𝐿 ∈ 𝒞1, but I am not certain.
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2.6.1 Equality Constraints
We focus on two types of equality constraints: “Isoperimetric Problems” and “Holonomic
Problems.” The methods that we are going to use are basically a direct extension of the
finite-dimensional Lagrangian methods.

Isoperimetric Problems

This is a straightforward extension of the equality constraints methods we looked at previ-
ously. To translate that setting into that context, we have two functionals:

ℱ[𝑢] =∫
𝑏

𝑎
𝐿𝐹(𝑥, 𝑢, 𝑢′)𝑑𝑥

𝒢[𝑢] =∫
𝑏

𝑎
𝐿𝐺(𝑥, 𝑢, 𝑢′)𝑑𝑥

The problem that we are trying to solve is

max𝑢 ℱ[𝑢]
s.t. 𝐺[𝑢] = 𝑐
𝑢 ∈ 𝒜 ≔ {𝑢 ∈ 𝒞1, 𝑢(𝑎) = 𝐴, 𝑢(𝑏) = 𝐵}

Notice that here 𝒢 is just from 𝒞1[𝑎, 𝑏] → ℝ, but we could easily make the range ℝ𝑛. This
is equivalent to moving from one constraint to 𝑛, just as before.

We get the corresponding result, as we had in the finite dimensional case.

Theorem 2.6.6. If 𝑢∗ ∈ 𝒜 has 𝜕𝒢
𝜕𝑢 (𝑢∗) ≢ 0, then for a maximizer 𝑢∗ we must have that

𝜕ℱ
𝜕𝑢 (𝑢∗) + 𝜆𝜕𝒢𝜕𝑢 (𝑢∗) ≡ 0 on [𝑎, 𝑏]

for some 𝜆 ∈ ℝ.

I state the theorem without proof, but again this is just the generalization of the finite
dimensional case.

Example 2.6.3. Suppose that the problem is to maximize

∫
𝑏

𝑎
𝑢(𝑥)𝑑𝑥 subject to ∫

𝑏

𝑎
√1+ (𝑢′)2(𝑥)𝑑𝑥 = 𝑑

With the condition that

𝑢 ∈ 𝒜 ≔ {𝑢 ∶ [−𝑎, 𝑎] → ℝ|𝑢 ∈ 𝒞1, 𝑢(−𝑎) = 𝑢(𝑎) = 0}

We get first order conditions being that we have

−1 + 𝜆 𝜕
𝜕𝑥 [− 𝑢′

√1+ (𝑢′)2
] = 0
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We can rewrite this as

𝜆2 (𝑢′)2

1 + (𝑢′)2 = (𝑐 − 𝑥)2

Now, take some 𝑢 that satisfies the above. I claim that this means that 𝑢 satisfies

(𝑥 − 𝑐1)2 + (𝑢(𝑥) − 𝑐2)2 = 𝜆2

for some 𝑐1, 𝑐2 ∈ ℝ. This would mean exactly that 𝑢 lies on a circle. This equation holds if
and only if

𝑢′ = 𝑐1 − 𝑥
𝑢 − 𝑐2

⟺ (𝑢′)2(𝑢 − 𝑐2)2 = (𝑥 − 𝑐1)2

It can easily be shown that this is equivalent to (plugging into the equation for the circle)

(1 + (𝑢′)2) = 𝜆2

(𝑢 − 𝑐2)2 = 𝜆2𝑤(𝑢′)2

(𝑥 − 𝑐1)2

Hence, we have that solutions lie on a circle.

Example 2.6.4. Suppose that we would like to connect the points (0, 𝑏) and (𝑎, 0) and
enclose an area of 𝑠 ≔ 𝑎𝑏

2 with a solid that has the smallest area of revolution. That is,

minℱ[𝑢] =2𝜋∫
𝑎

0
𝑢(𝑥)√1 + (𝑢′)2(𝑥)𝑑𝑥

s.t. 𝒢[𝑥] =∫
𝑎

0
𝑢(𝑥)𝑑𝑥 = 𝑠

Our set of consideration is going to be

𝑢 ∈ 𝒜 ≔ {𝑢 ∶ [0, 𝑎] → ℝ|𝑢 ∈ 𝒞1, 𝑢(0) = 𝑏, 𝑢(𝑎) = 0}

Let us write out 𝐿𝐹, 𝐿𝐺:

𝐿𝐹 = 𝑧√1 + 𝑝2 𝐿𝐺 = 𝑧

This gives us the Euler-Lagrange equation

− 𝜕
𝜕𝑥 [ 𝑢𝑢′

√1+ (𝑢′)2
] +√1 + (𝑢′)2 + 𝜆 = 0

It can be verified that solutions are functions of the form 𝑢(𝑥) = 𝛼𝑥+𝛽, where 𝜆 = −1
√1+𝛼2

.

In general, solutions to the Euler-Lagrange equations are hard to compute, because they
will be a second-order ODE. That doesn’t mean that they are impossible to solve though.
And often, if the Euler-Lagrange equation is well-behaved then the local uniqueness for
ODEs in general will give us a unique candidate.
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Holonomic Problems

Suppose now that we are in a multi-dimensional space. That is, we are interested in vector-
value functions.

We aim to maximize

𝐹[𝑥, 𝑦, 𝑧] = ∫
𝑏

𝑎
𝐿(𝑡, 𝑥, 𝑦, 𝑧, ̇𝑥, ̇𝑦, ̇𝑧)𝑑𝑡

Subject to the constraint that the curve (𝑥, 𝑦, 𝑧) lies on the surface defined by 𝐻(𝑥, 𝑦, 𝑧) = 0.
We get the following conditions (as long as 𝐻 is regular: ∇𝐻 ≠ 0 on the surface 𝐻 = 0):

⎛⎜⎜
⎝

𝜕𝐹
𝜕𝑥 (𝑥, 𝑦, 𝑧)(𝑡)
𝜕𝐹
𝜕𝑦 (𝑥, 𝑦, 𝑧)(𝑡)
𝜕𝐹
𝜕𝑧 (𝑥, 𝑦, 𝑧)(𝑡)

⎞⎟⎟
⎠

+ 𝜆(𝑡)⎛⎜
⎝

𝐻𝑥(𝑥, 𝑦, 𝑧)
𝐻𝑦(𝑥, 𝑦, 𝑧)
𝐻𝑧(𝑥, 𝑦, 𝑧)

⎞⎟
⎠

= 0

Notice that we have additional degrees of freedom in the 𝜆 because our constraints are
tighter.
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Chapter 3

Measure Theory

Measure theory forms the foundation for how we think about uncountably infinite settings.
These settings allow us to think about settings that are significantly more complicated than
other settings. Perhaps surprisingly, these settings often afford us more tractability than
discrete environments.

The most obvious example is thinking about situations where agents are “small.” In
any discrete economy, agents choices’ will have some impact on aggregate outcomes. This
impact may be small, but it will not be zero. At the same time, for realism it does not
seem that this is a reasonable model of the world. Very seldom do we think of individuals
as considering the aggregate impact of their own choices. Of course, there are some times
when individuals over-weigh their aggregate impact (e.g., voting or the Loblaw’s boycott in
Canada this summer), but there also the discrete model does not capture the behaviour.

In order to model the situation makes sense to think of individuals as having “measure
zero” impact on the aggregate economy. That is, individuals have no impact on anything,
and so will act only to maximize their own objective (we can think of many situations where
this doesn’t apply, but that is outside the scope of this introduction).

Another example where this is important is in thinking of probability theory, which is,
of course, the second part of this chapter. Discrete probabilities are notoriously hard to
work with, and we know from the Central Limit Theorem that as things grow large, every-
thing looks normal anyway. So, we would like a robust way of thinking about continuous
probability spaces.

This chapter goes through the motivation of measures, 𝜎-algebras, how we think about
extensions of continuity and integration in this setting, and then goes on to discuss proba-
bility spaces. These tools are more technical than the previous chapter (whose tools seem
directly applicable), but are just as important. In many ways it is their nuance that makes
them important.

3.1 Measures
The Wombats, Beautiful People Will Ruin Your Life1

One of the motivation for this section is we want to have some idea of the “size” of sets.
If we want to talk about models where there is a continuum of agents, then we need to have
a serious discussion about how we think about sets. When we are dealing with non-trivial
sets, how do we know what proportion of the population they represent?

1Fun fact: the lead singer of the Wombats’ name is Matt Murphy.
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What we will do is start with our intuition for what we think of as size (discuss) and
then generalize this to a wider class of functions called “measures.” In order to get there we
will need some fairly serious math, but it is important to not lose the intuition at any point.

This is where I will take a somewhat non-standard approach to introducing measure
theory. I am going to start with a lengthy foray into “length” in ℝ before we get into the
general definitions that are normally associated with measure theory. Suppose that we have
an interval in ℝ, 𝐼 = (𝑎, 𝑏). The most natural notion of size is its length: |𝐼| ≔ 𝑏 − 𝑎. Now
suppose that we have a more complicated set (draw – not in ℝ2!). A natural way to think
about length is the total length of intervals necessary to cover this set.

Definition 3.1.1. We define the Lebesgue outer measure of 𝐴 ⊆ ℝ as

𝑚∗(𝐴) ≔ inf{∑|𝐼𝑘|∣ {𝐼𝑘} an open covering of 𝐴 by intervals}

If for all countable open coverings of 𝐴 we have ∑|𝐼𝑘| = ∞, we define 𝑚∗(𝐴) ≔ 𝐴.

Why do we call this the “outer” measure? Because exactly we are covering 𝐴 from the
outside. It is natural to think about a converse, where we measure from the inside. We will
see later what happens when we look at the inner measure, but for now we focus on the
outer measure. We get first some basic results.

Proposition 3.1.2. We have the following:

(a) 𝑚∗(∅) = 0 and 𝑚∗(ℝ) = ∞

(b) 𝑚∗ is monotonic: if 𝐴 ⊆ 𝐵 then we have 𝑚∗(𝐴) ≤ 𝑚∗(𝐵)

(c) 𝑚∗ is countably sub-additive: for 𝐴1, ... a countable set we have 𝑚∗ (⋃𝐴𝑖) ≤ ∑𝑚∗(𝐴𝑖)

Proof. Do it on the board.

For do we extend this to larger spaces? We simply use the higher-dimensional analogue
of intervals: boxes.

Definition 3.1.3. In ℝ𝑛, we define for a box 𝐵 = ∏𝐼𝑗 that |𝐵| ≔ ∏ |𝐼𝑗|. We then get

𝑚∗(𝐴) ≔ inf{∑|𝐵𝑘|∣ {𝐵𝑘} an open covering of 𝐴 by boxes}

We have some more basic results about “zero” sets. That is, sets that have outer measure
zero.

Proposition 3.1.4. We have the following:

(a) The subset of a zero set is a zero set

(b) The countable union of a zero set is a zero set

(c) The plane {𝑥|𝑥𝑖 = 𝑎} is a zero set

Notice that at this stage it is not even obvious that general hyper-planes are zero sets.
This highlights the trickiness of dealing with this loose definition. We would need to con-
struct a specific open covering using boxes that converges in value to zero. Later we will see
that linear transformations act like they should, but at this stage we know very little about
how the outer measure operates.

It is not even trivial that we have the following result.
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Lemma 3.1.5. 𝑚∗(𝐵) = ∏ |𝐼|, where 𝐵 = ∏𝐼.

Proof. Use the Lebesgue number property of open coverings of compact sets to get the lower
bound. That is, for any open covering by boxes, there exists a Lebesgue number 𝜆 > 0. For
this 𝜆, divide the set 𝐵 into (open) rectangles of this size. From here we can just count.
The upper bound is immediate from a shrinking argument.

We would need to show that there is no way to save space in the box by a smart covering.
Of course, this is the result that we suspect. The takeaway is that in general measures are
very difficult to work with, but tend to operate the way that we expect them to once we get
past those difficulties.

Corollary 3.1.6. Closed/open intervals do not matter for how we measure the outer mea-
sure.

The above was really an involved example using ℝ as the baseline. We want to generalize
these ideas to other spaces, and so we will need a more general definition. We will eventually
get to a definition of a measure, but for now we start with a definition of “outer measure.”

Definition 3.1.7. Suppose that we have a set 𝑋. An outer measure on 𝑋 is a function
𝜔 ∶ 2𝑋 ∶ [0,∞) such that

(a) 𝜔(∅) = 0

(b) 𝜔 is monotonic: if 𝐴 ⊆ 𝐵 then we have 𝜔(𝐴) ≤ 𝜔(𝐵)

(c) 𝜔 is countably sub-additive: for 𝐴1, ... a countable set we have 𝜔 (⋃𝐴𝑖) ≤ ∑𝜔(𝐴𝑖)

The outer measure is defined on every subset of a set 𝑋. We can think of the outer
measure as a coarse notion of length. What separates this definition from the definition of a
“measure” is that we have no way of insuring that weird things don’t happen. For example,
are there subsets of [0, 1] that are “dense” enough to have the same outer measure as [0, 1],
but that are non-intersecting? Eventually, we want to replace (c) with a different statement
that makes our definition additive, not sub-additive.

With this example in mind, it turns out that the only nice property that we need for
the outer measure is that it outer measure behaves well when we intersect a set with it and
its compliment.

Definition 3.1.8. A set 𝐸 is measurable with respect to outer measure 𝜔 if for all 𝐴 ⊆ 𝑋
we have that

𝜔(𝐴) = 𝜔(𝐴 ∩ 𝐸) + 𝜔(𝐴 ∩ 𝐸𝐶)

If 𝜔 = 𝑚∗ then we call 𝐸 Lebesgue measurable. We denote the Lebesgue measure on the set
of Lebesgue measurable sets by 𝑚𝐸 ≔ 𝑚∗𝐸.

From here, it is important to do a little detour into 𝜎-algebras, because it turns out that
this will be the structure of interest for us when we are thinking about the collection of
measurable sets. It is important to keep in mind that although we are especially interested
in Lebesgue measurable sets, the definitions and structure all apply to general spaces and
measures, as we will see when we progress.
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Summary: We have tried to generalize the notion of “length” for arbitrary spaces. This
came out as the definition of an outer measure. We started a discussion of what it means
for a set to be measurable with respect to this measure.

3.2 𝜎-Algebras
Annalisa, E POI SIAMO FINITI NEL VORTICE2

As with notions of topology, what we want is a notion of a “good” set. Our idea is that
“good” sets are going to exactly be the measurable sets. How our definition of “good” differs
from the topological setting is that each good set is going to have a corresponding number,
its “size.” In order to accommodate thinking about size, we need to alter our definition of
what is a good set.

Agents on their own should not matter, but if a large group of agents together act then
they should have some impact on aggregate outcomes. In order to formalize that notion, we
need some way of talking about a proportion of agents. Consider first use indexing agents
on the unit interval: 𝑖 ∈ [0, 1].

Why is this notion of good different than the topological notion of good? If 𝐴 is a “good”
set, i.e., if we can measure the proportion of agents that lie in 𝐴, then it is obvious that
[0, 1] ∖ 𝐴 will also be a “good” set. This is because the proportion in this set is easy to
measure: it is just 1 minus the proportion in 𝐴. This lies in stark contrast to topology,
where openness lies in direct contrast to closedness.

But, if closed sets are also good, what is stopping us from generating every set? In
ℝ with the standard topology the reason is subtle. In general, we do not allow arbitrary
unions, but instead we only allow countable unions of good sets.

Why is this restriction subtle in ℝ? Because countable unions (of basis sets) are equiv-
alent to arbitrary unions when we think about the generation of the standard topology:
the standard topology on ℝ it is second-countable. So, our considering complements has
significant bite here, it forces us to restrict our ideas.

Another good motivating example of what a “good” set is will become clearer when we
discuss probability theory. We can think of the set [0, 1] representing states of the world.
“Good” sets then, are exactly sets that we can know for certain or not know (events). E.g.,
it is raining, it is snowing. If we know when it is raining, then we know when it is not
raining. If we know when it is raining and when it is snowing, we know when it is raining
or snowing.

With these ideas, it is time to define the type of object that is going to exactly capture
what properties our “good” sets are going to have:

Definition 3.2.1. A collection 𝐴 ⊆ 2𝑋 is a 𝜎-algebra if the following conditions hold:

1. 𝑋 ∈ 𝐴

2. If 𝐸,𝐹 ∈ 𝐴 then we have that 𝐸 ∖ 𝐹 ∈ 𝐴

3. If 𝐸1, ..., 𝐸𝑛, ... ∈ 𝐴, then ⋃∞
𝑖=1 𝐸𝑖 ∈ 𝐴

Notice that the second and third conditions together imply that countable intersections
are also allowed. For any set 𝑋 we get two trivial 𝜎-algebras, just as we did in topology:

2She should have won Sanremo 2024.
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Example 3.2.1. Given a set 𝑋, both {∅,𝑋} and 2𝑋 are 𝜎-algebras.

𝜎-algebras are an arbitrary mathematical structure, so it is hard in general to think
about non-trivial examples. To this end, it will be helpful to talk about a useful class of
𝜎-algebras. Just as in topology, where we could talk about picking a basis and generating a
topology around that basis, we can generate a 𝜎-algebra around a collection set.

Definition 3.2.2. Given a 𝐵 ⊆ 2𝑋, we define the 𝜎-algebra generated by 𝐵 (denoted
𝐴(𝐵)) to be the smallest 𝜎-algebra containing 𝐵. That is, it is the collection of subsets of
𝑋 satisfying the following conditions:

1. 𝐵 ⊆ 𝐴(𝐵)

2. 𝐴(𝐵) is a 𝜎-algebra

3. If 𝐴′ is a 𝜎-algebra containing 𝐵, then 𝐴(𝐵) ⊆ 𝐴′

We have the following result:

Proposition 3.2.3. 𝐴(𝐵) defined above exists and is unique. Specifically, letting

𝒜(𝐵) ≔ {𝐴′ 𝜎-algebra|𝐵 ⊆ 𝐴′}

we have that 𝐴(𝐵) can be explicitly derived as

𝐴(𝐵) = ⋂
𝐴′∈𝒜(𝐵)

𝐴′

I leave the above as an exercise. Using this definition, it is easy to think of examples of
𝜎-algebras (relate this to the “knowing” example).

Example 3.2.2. Some discrete stuff—draw a picture.

Example 3.2.3. Consider ℝ endowed with the standard topology. Consider the 𝜎-algebra
that is generated by all open sets.

What do we get with this construction? Of course, we will have all open intervals (𝑎, 𝑏)
because they are open. However, we will also get all closed intervals [𝑎, 𝑏] and half-open
intervals (𝑎, 𝑏] and [𝑎, 𝑏). Because we get closed sets, we also get all singletons. So, we get
any countable set.

It turns out that this last example will be extremely important.

Definition 3.2.4. We call the 𝜎-algebra as described in Example 3.2.3 the Borel 𝜎-algebra.
We will denote it by ℬ(ℝ) or simply by ℬ. If 𝐸 ∈ ℬ then we will call 𝐸 Borel-measurable3

or simply Borel.

There is a natural question to ask. We have added many sets to our standard topology.
Have we added all of them?

Theorem 3.2.5. ℬ ≠ 2ℝ.
3The fact that we call these sets measurable is not random of course.
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Proof. See Section 3.3.3. This is an interesting question, and not trivial. Very poorly
behaved sets are measurable.

Example 3.2.4. Consider the same with ℝ𝑛 with 𝑛 > 1. The generating set can now
equivalently be cubes or spheres. We will denote this 𝜎-algebra as ℬ𝑛.

One final peace of terminology that we will use. It is sometimes nice to denote a set
together with a 𝜎-algebra on that set.

Definition 3.2.6. A tuple (𝑋,𝐴) such that 𝑋 ≠ ∅ and 𝐴 is a 𝜎-algebra on 𝑋 is called a
measurable space. Given a measurable space (𝑋,𝐴), we will call any set 𝐸 ∈ 𝐴 measurable.

We have now defined measures and measurable spaces. It is natural to ask what is the
connection between the two. The next section discusses this.

3.3 Measurability
Peach Pit, Being so Normal

We now get some meaningful results on the relationship between the two previous sec-
tions.

Theorem 3.3.1. Let 𝑋 be a set with an outer measure 𝜔. Then the collection of measurable
sets 𝑀 with respect to 𝜔 is a 𝜎-algebra. Moreover, 𝜔|𝑀 is countably additive (on disjoint
subsets things are additive) and zero sets are measurable.

Proof. We first show that zero sets are measurable. Notice that we will always have that

𝜔(𝐸) ≤ 𝜔(𝐸 ∩ 𝑍) + 𝜔(𝐸 ∩ 𝑍𝑐)

this just follows from the sub-additivity of outer measures. But then if 𝑍 has measure 0, we
will also have

𝜔(𝐸 ∩ 𝑍) + 𝜔(𝐸 ∩ 𝑍𝑐) ≤ 𝜔(𝐸)

because the subset of a measure zero set must be measure zero.
To show that it is closed under finite union, we first show that it is closed under sub-

traction. This requires just De Morgan’s laws and writing things out clearly. Start with two
measurable 𝐸1, 𝐸2. We have

𝜔(𝑋) =𝜔(𝑋 ∩ 𝐸1) + 𝜔(𝑋 ∩ 𝐸𝑐
1)

=𝜔(𝑋 ∩ 𝐸1 ∩ 𝐸2) + 𝜔(𝑋 ∩ 𝐸1 ∩ 𝐸𝑐
2) + 𝜔(𝑋 ∩ 𝐸𝑐

1 ∩ 𝐸2) + 𝜔(𝑋 ∩ 𝐸𝑐
1 ∩ 𝐸𝑐

2)
=𝜔(𝑋 ∩ (𝐸1 ∩ 𝐸𝑐

2)) + 𝜔(𝑋 ∩ (𝐸1 ∩ 𝐸𝑐
2)𝑐)

We then have that it is closed under finite union because 𝐴 ∩ 𝐵 = (𝐴𝑐 ∖ 𝐵)𝑐.
To show that we are closed under infinite union, it is enough to show that it holds for

infinite disjoint union, by the above.
Suppose that 𝐸 = ⋃∞ 𝐸𝑖, where all of the 𝐸𝑖 are disjoint. Define, for each 𝑛, 𝐹𝑛 ≔

⋃𝑛 𝐸𝑖. We know that each 𝐹𝑛 is measurable by above. Then, for each 𝑛 we have that

𝜔(𝑋) = 𝜔(𝑋 ∩ 𝐹𝑛) + 𝜔(𝑋 ∩ 𝐹 𝑐
𝑛) ≥

𝑛
∑𝜔(𝑋 ∩ 𝐸𝑖) + 𝜔(𝑋 ∩ 𝐸𝑐)
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But notice that we also have that 𝜔(𝑋) ≤ ∑𝜔(𝑋 ∩𝐸𝑖)+𝜔(𝑋 ∩𝐸𝑐). Since the above holds
for all 𝑛, we must have that there is equality (either the sum converges or it diverges; either
way it is obvious). Countable additivity follows from a similar argument.

This result gives us another way to think about measures. The outer measure approach
is one that starts from basics, using our basic intuition for what our notion of size should
be. There is another approach that starts with a 𝜎-algebra, and then defines a “measure”
on this set.

Definition 3.3.2. Let (𝑋,𝐴) be a measurable space. A measure on 𝑋 is a function 𝜇 ∶
𝑆 → ℝ ∪ {∞} such that:

1. 𝜇(∅) = 0

2. 𝜇(𝐸) ≥ 0 for all 𝐸 ∈ 𝑆

3. 𝜇 is countably additive on disjoint subsets

Definition 3.3.3. Let (𝑋,𝐴) be a measurable space, and 𝜇 a measure on 𝐴. We call the
tuple (𝑋,𝐴, 𝜇) a measure space.

There is a natural question of whether the two notions are identical. Of course, for any of
“our” measures, one gets a measure by this definition. The major difference is the 𝜎-algebra
that one gets. The discussion below on the Lebesgue measure starts to get at this.

3.3.1 Lebesgue Measurability
Now, of course we are headed to showing that the Lebesgue measurable sets are exactly the
sets that are Borel (plus or minus zero sets—this is important!). We prove this in a few
steps.

First, we show that half-spaces are measurable.

Lemma 3.3.4. Half-spaces are measurable.

Proof. Exercise. It is easy

Corollary 3.3.5. Boxes are measurable.

Corollary 3.3.6. Open and closed sets are measurable.

Proof. Take a countable basis of boxes.

Definition 3.3.7. Let 𝐺𝛿 be the set of the countable intersection of open sets.
Let 𝐹𝜎 be the set of the countable union of closed sets.

Theorem 3.3.8. A set 𝐸 is measurable if and only if there exist 𝐺 ∈ 𝐺𝛿 and 𝐹 ∈ 𝐹𝜎 such
that 𝐹 ⊂ 𝐸 ⊂ 𝐺 and 𝑚(𝐺 ∖ 𝐹) = 0.

Proof. Assume that 𝐸 is bounded and measurable, so that it is contained in some box 𝑅.
Abusing notation, set 𝐸𝑐 = 𝑅 ∖ 𝐸. Let ℛ𝑛 be an open cover of 𝐸 such that ∑𝑅∈ℛ𝑛

|𝑅| ≤
𝑚(𝐸) + 1

𝑛 .
Define recursively 𝑈𝑚 = ⋃ℛ𝑚

𝑅 ∩ 𝑈𝑚−1. Do the same process for 𝐸𝑐, and define those
sets 𝑉𝑚. Because 𝐸 is measurable, we have that 𝑚(𝑈𝑚 ∖ 𝐸) = 𝑚(𝑈𝑚) −𝑚(𝐸) → 0. Define
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𝐺 ≔ ⋂𝑈𝑚. By the continuity of measure, we have that 𝑚(𝐺) = 𝑚(𝐸). Similarly, define
𝐾𝑚 ≔ 𝑅∖ is closed and increasing, with 𝐾𝑚 ⊂ 𝐸. The result follows with 𝐹 ≔ ⋃𝐾𝑚.

If 𝐸 is not bounded, we need to do a little more work.

I leave the other direction as an exercise, as it was left to me.

Aside: So, except for a zero set, all measurable sets are Borel. Can we show that all zero
sets are Borel? The answer, which may be surprising, is no. See a little bit later (Section
3.3.2). This may seem like a semantic point (and it is), but the point is that often times
people start directly with the definition of the Lebesgue measure on Borel sets. While it is
certainly defined on Borel sets, the Borel 𝜎-algebra is not the entire set of measurable sets.
It is “almost” all Lebesgue measurable sets (which is why often people don’t care), but it is
but a point in all measurable sets.

We also can say a little bit more about what happens in higher dimensions

Theorem 3.3.9. Let 𝐸 ⊆ ℝ𝑛, 𝐹 ⊆ ℝ𝑚. Then if 𝐴,𝐵 are measurable, we have that 𝐴×𝐵
is measurable in ℝ𝑛+𝑚 with 𝑚(𝐴 × 𝐵) = 𝑚(𝐴) ⋅ 𝑚(𝐵). This is with the convention that
∞ ⋅ 0 = 0 ⋅ ∞ = 0.

Proof. Suppose first that 𝐸 = 𝑍 is a zero set. Notice that 𝑍×ℝ𝑚 will be a zero set because
we can cover 𝑍 × [−𝑘, 𝑘]𝑚 by sets with measure at 𝜖/2𝑘. Taking the union over 𝑘 ∈ ℕ gives
the result.

If 𝐸,𝐹 are both cubes, then this is trivial. Now, if they are both open sets, we can get
disjoint cubes {𝑅𝐸

𝑖 } such that 𝑚(𝐸 ∖∪𝑅𝐸
𝑖 ) = 0, and similarly for 𝐹. This case then follows

from the two previous cases.
Now, for general 𝐸,𝐹, if they are bounded we apply Theorem 3.3.8 and the result follows.

For unbounded we can simply take the union over increasing bounded subsets.

3.3.2 The Cantor Set
To show that not all measurable sets are Borel, we must do two things. First, we must
observe that the cardinality of the Borel 𝜎-algebra is the cardinality of the reals. This
observation follows from ℝ being second-countable, and all Borel sets being a countable
number of operations away from an open set.

Second, we construct a measure zero set that is uncountable. Why will this prove the
claim? Well, we know that (1) |2ℝ| > |ℝ| and (2) the subset of any measure zero set has
measure zero. That is all.

We now begin the construction of the Cantor set. Make sure to draw a picture.
There are two equivalent constructions. I will first go through the graphical interpreta-

tion, and then explain why this is equivalent to the ternary expansion definition.

1. Start with the unit interval 𝐶0 = [0, 1]

2. Take out the middle third. I.e., 𝐶1 = ([0, 1/3] ∪ [2/3, 1])

3. Take out the middle third of each smaller interval:

𝐶2 = ([0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1])
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4. Repeat the process indefinitely:

𝐶 =
∞
⋂
𝑖=0

𝐶𝑖

What is another way to envision this? Just as we can write out the binary expansion of
any real number, we can also write out the ternary expansion. For any 𝑥 ∈ [0, 1] we have
that

𝑥 =
∞
∑
𝑖=1

𝑥𝑖3−𝑖

for some 𝑥𝑖. The construction of the Cantor set is exactly removing at the 𝑖-th stage any
number 𝑥 that in its ternary expansion has 𝑥𝑖 = 1. So, we are left exactly with those
numbers that have only 0’s and 2’s in their ternary expansion.4

Lemma 3.3.10. The Cantor set is uncountable. That is, we have |𝐶| = |ℝ|.

Proof. Use the ternary expansion definition of the set. Can we make a bijection to the unit
interval when we represent those numbers in their binary expansion?

Theorem 3.3.11. Not all measurable sets are Borel. The set of measurable sets has
cardinality given by |2ℝ|.

3.3.3 Vitali Sets: Non-measurability
We have just shown in the above section that the set of measurable sets has cardinality
given by |2ℝ|. The set of all subsets of ℝ also has cardinality given by |2ℝ|. A natural
question is whether every set is measurable. I do not know whether this is surprising or not,
but the answer is no. Not every set is measurable.

Theorem 3.3.12. There exists a non-measurable set.

Proof. Note that this relies heavily on the Axiom of Choice. In some ways it is obvious
that it is going to be needed. Non-measurable sets are extremely poorly behaved, and so
analytically writing down a non-measurable set is going to require some funny business.

First, start with the unit interval [0, 1]. Define a relation ∼ on [0, 1] that is given by

𝑥 ∼ 𝑦 ⟺ 𝑥− 𝑦 ∈ ℚ

It can easily be seen that ∼ is an equivalence relation.
Now, construct a set 𝑉 (a “Vitali” set) by choosing exactly one element from each

equivalence class.5
We show that 𝑉 is not measurable. We do this by showing that if 𝑉 were measurable,

then it would simultaneously need to have measure zero and positive measure.
Consider now, for each 𝑟 ∈ ℚ ∩ [−1, 1], the set 𝑉𝑟 ≔ {𝑣 + 𝑟|𝑣 ∈ 𝑉}. We will have that

𝑉𝑟 ⊆ [−1, 2]. Notice as well that 𝑚∗(𝑉𝑟) = 𝑚∗(𝑉 ) and that 𝑉𝑟 ∩ 𝑉𝑟′ = ∅ for all 𝑟 ≠ 𝑟′.
Consider as well that there will be countably many of these 𝑉𝑟, and that

[0, 1] ⊆ ⋃
𝑟
𝑉𝑟 ⊆ [−1, 2]

4What about 1
3 ? Well, we can write it as 0.1 or as 0.0222..., can we not?

5AoC-ed.
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The first inclusion follows from the definition of 𝑉, and the second inclusion follows from
algebra. Finally, notice that 𝑉 is measurable if and only if 𝑉𝑟 is measurable (for each 𝑟).
Then, if 𝑉 were measurable (towards a contradiction), we would have that

𝑚([0, 1]) ≤ 𝑚(⋃
𝑟
𝑉𝑟) ≤ 𝑚([−1, 2])

But then, we would have that

1 ≤ ∑
𝑟

𝑚(𝑉𝑟) = ∑
𝑟

𝑚(𝑉 ) ≤ 3

We cannot simultaneously have these inequalities satisfied. The first implies that 𝑚(𝑉 ) > 0,
so that ∑𝑟 𝑚(𝑉 ) = ∞ (because it is the infinite sum of a positive number). The second
implies that 𝑚(𝑉 ) = 0, so that ∑𝑟 𝑚(𝑉 ) = 0. We conclude that 𝑉 is not measurable.

This construction is not unique to the unit interval. In fact, it can be shown that any
positive measure measurable set contains a non-measurable set. More than this, the set of
non-measurable sets also has cardinality |2ℝ|.

3.4 Measurable Functions
Gold Spectacles, Gold Spectacles

We now have a notion of “good” sets. Just as in topology, we can now define what it
means for a function to be “good” in this context. The definition here is going to be identical
in notion, just with now corresponding notions.

Definition 3.4.1. Suppose that (𝑋,𝐴𝑋) and (𝑌 ,𝐴𝑌) are two measurable spaces. We say
that a map 𝑓 ∶ 𝑋 → 𝑌 is measurable with respect to 𝐴𝑋, 𝐴𝑌 if the pre-image of every
measurable set is measurable:

𝑓−1(𝐸𝑌) ∈ 𝐴𝑋 for all 𝐸𝑌 ∈ 𝐴𝑌

What is our intuition for topological continuity? We know that it is equivalent to se-
quential continuity, so that things are “close” to one another remain “close” to one another
after we apply the function (of course, this is just the 𝜖 − 𝛿 definition of continuity from
first-year calculus).

There is a similar intuition here, but we can’t apply exactly the same logic. There is no
notion of “closeness” in a measurable space. Instead, what I think is good to think about is
a notion of differentiation.

Suppose that 𝑥, 𝑥′ ∈ 𝑋 are such that for all 𝐸 ∈ 𝐴 we have that 𝑥, 𝑥′ ∈ 𝐸 or 𝑥, 𝑥′ ∉ 𝐸.
That is, from the point of view of 𝐴 we cannot differentiate 𝑥, 𝑥′. Then, if 𝑓 is measurable
we must have that 𝐴𝑌 cannot differentiate 𝑓(𝑥) and 𝑓(𝑥′). If we had some 𝐸𝑌 ∈ 𝐴𝑌 such
that 𝑓(𝑥) ∈ 𝐸𝑌 and 𝑓(𝑥′) ∉ 𝐸𝑌, then we could use 𝑓 to somehow gain additional information
about 𝑥, 𝑥′. What measurability is forcing upon our structure is that information cannot
be gained when we apply a function.
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Aside: There is another (equivalent) definition of measurability of functions to ℝ that I
think is more intuitive, and also will be useful for thinking about the expanded notion of
integration in this context. We will define it just for positive functions (which will be our
interest in probability spaces anyway), but the definition can be easily extended to general
functions to ℝ.
Definition 3.4.2. Let (𝑋,𝐴𝑋) be a measurable space. Define the undergraph of a function
𝑓 ∶ 𝑀 → [0,∞) to be the set

𝒰𝑓 ≔ {(𝑥, 𝑦) ∈ 𝑋 × [0,∞)|0 ≤ 𝑦 ≤ 𝑓(𝑥)}

We say that 𝑓 is measurable 𝒰𝑓 is (Borel-)measurable with respect to the product measure.6

We are also going to be interested in a specific class of measurable functions, where we
restrict the measurable spaces to just being ℝ.
Definition 3.4.3. Suppose that 𝑓 ∶ ℝ → ℝ is measurable with respect to ℬ,ℬ. Then we
say that 𝑓 is Borel-measurable.

We get some basic results, which have their direct analogues from topology.
Proposition 3.4.4. Let (𝑋,𝐴𝑋) and (𝑌 ,𝐴𝑌) be measurable spaces with 𝑓 ∶ 𝑋 → 𝑌. If
there exists a collection 𝐵 ⊆ 2𝑌 such that

1. 𝒜(𝐵) = 𝐴𝑌

2. 𝑓−1(𝐸) ∈ 𝐴𝑋 for all 𝐸 ∈ 𝐵
then 𝑓 is measurable.
Corollary 3.4.5. If 𝑓 ∶ ℝ → ℝ is continuous,7 then 𝑓 is Borel-measurable.
Proof. Exercise.

We have another theorem, where we look just at slices.
Theorem 3.4.6. Let (𝑋,𝐴𝑋) be a measurable space. Let 𝑓 ∶ 𝑋 → ℝ. Then the following
are equivalent:

1. 𝑓 is measurable

2. {𝑥 ∈ 𝑋|𝑓(𝑥) > 𝛼} ∈ 𝐴𝑋 for all 𝛼 ∈ ℝ

3. {𝑥 ∈ 𝑋|𝑓(𝑥) ≤ 𝛼} ∈ 𝐴𝑋 for all 𝛼 ∈ ℝ
Proof. This follows from basic set theory, so I leave it as an exercise.

With the above results, we can start to talk about specific convergence results that are
the primary goal of this portion.

I close this section with a specific definition that will clean up our language somewhat is
the following. We can think of a measurable function 𝑝 from a measurable space to {0, 1}
being a “proposition.” If 𝑝(𝑥) = 1, then 𝑝 is “true” at 𝑥, and otherwise it is “false” at 𝑥.
Definition 3.4.7. Let (𝑋,𝐴, 𝜇) be a measure space equipped with a , with 𝑝 ∶ 𝑋 → {0, 1}
be a measurable function. We say that 𝑝 happens “almost everywhere” if

𝜇(𝑝−1(0)) = 0
6Similar to the product topology, the outer measure is defined on the correct notion of “boxes.” From

there we take the infimum as before. This isn’t always unique, but all of the measures with which we will
deal (in particular all finite measures, and the Lebesgue measure) it is.

7With respect to the standard topology. However, we could take some other topologies here...
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3.5 Lebesgue Integration and Convergence Theorems
San Cisco, Under the Light

Just as we had two definitions for a function to be measurable, we will have two (equiv-
alent) definitions of the integral.

The first definition will correspond to the second definition of measurability (Definition
3.4.2) I introduce it first because it requires less notation, and I think it corresponds to the
graphical interpretation that we have for the integral as the “area under the graph.”

Definition 3.5.1. Let (𝑋,𝐴, 𝜇) be a measure space, and let 𝑓 ∶ 𝑋 → [0,∞) be a measurable
function. Let 𝑚 be the corresponding product measure. Then, we say that 𝑓 is integrable if
𝑚(𝒰𝑓) < ∞, and define

∫
𝑋
𝑓 ≔ 𝑚(𝒰(𝑓))

The set of all integrable functions from ℝ to ℝ is denoted ℒ1. We define

ℒ𝑝 ≔ {𝑓|𝑓𝑝 integrable}

The other definition corresponds loosely to the Reimann sum intuition that we get from
first-year calculus. Unfortunately, like that definition, this definition requires a little more
machinery.

Definition 3.5.2. Let (𝑋,𝐴) be a measurable space. A function 𝑠 ∶ 𝑋 → ℝ is called an
𝐴-simple function if:

1. 𝑠 is measurable

2. There exists a finite set 𝐶 ⊆ ℝ such that 𝑠(𝑋) ∈ 𝐶

I.e., they are functions that only take finitely many values.

Theorem 3.5.3. A function 𝑠 ∶ 𝑋 → ℝ is 𝐴-simple if and only if there is a finite partition
𝐸1, ..., 𝐸𝑚 of 𝑋 and 𝑐1, ..., 𝑐𝑚 ∈ ℝ such that

𝑠(𝑥) ≡
𝑚
∑
𝑖=1

𝑐𝑖𝟙(𝑥 ∈ 𝐸𝑖)

We call such representation a canonical representation of 𝑠.

With this definition and result, we can explicitly state the other definition of the Lebesgue
integral.

Definition 3.5.4. Let (𝑋,𝐴, 𝜇) be a measure space, and let 𝑠 ∶ 𝑋 → ℝ be a simple and
measurable function, with 𝑠(𝑥) = ∑𝑚

𝑖=1 𝑐𝑖𝟙(𝑥 ∈ 𝐸𝑖) a canonical representation. Then, we
define the Lebesgue integral of 𝑠 to be

∫
𝑋
𝑠𝑑𝜇 ≔ ∑𝑐𝑖𝜇(𝐸𝑖)

Now, let 𝑓 ∶ 𝑋 → ℝ+ be any measurable function. We define

∫
𝑋
𝑓𝑑𝜇 ≔ sup

𝑠≤𝑓, 𝑠 𝐴−simple
(∫

𝑋
𝑠𝑑𝜇)

49



For simple functions, this is an obvious definition. For arbitrary functions, we take all
simple functions that are less than 𝑓, and take the supremum over all of their integrals. This
definition is really the generalization of Riemann sums from first-year calculus. There we
used rectangles. Here we need to use more general sets because the functions can be more
complicated. For example, consider 𝑓(𝑥) = 𝟙(𝑥 ∈ ℚ).

Proposition 3.5.5. The two definitions are equivalent.

Proof. See Theorem 3.3.9. This is really just a slight generalization of that theorem to the
situation where one of the elements in a product space is not necessarily ℝ.

When I was learning Lebesgue Integration, I had the differences between Riemann and
Lebesgue integration described to me as follows. Suppose that it is you job to count the
number of tokens in a room. All of the tokens are stacked in piles. In Riemann integration,
what you are doing is going to each stack of tokens, counting them individually, and then
adding that sum to your running total. In Lebesgue integration, what you are doing is
counting how many stacks have one token, then how many have two tokens (multiplying by
2 and then adding to your running sum) and so on. I leave it to you to determine which
method you would prefer.

We can similarly get the definition of an integral over a region.

Definition 3.5.6. The restricted integral of 𝑓 to a set 𝐸 is defined by

∫
𝐸
𝑓 ≔ ∫

𝑋
𝑓 ⋅ 𝟙𝐸

We can get some results regarding the integral that should appear obvious.8

Proposition 3.5.7. Throughout, fix (𝑋,𝐴, 𝜇) and two measurable functions 𝑓, 𝑔 ∶ 𝑋 → ℝ+.
We have that

1. If 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝑋, then ∫𝑓𝑑𝜇 ≤ ∫𝑔𝑑𝜇

2. If 𝐸,𝐹 ∈ 𝑆 with 𝐸 ⊆ 𝐹, we have that ∫𝐸 𝑓𝑑𝜇 ≤ ∫𝐹 𝑓𝑑𝜇

3. If 𝜇(𝐸) = 0, then ∫𝐸 𝑓𝑑𝜇 = 0

4. If 𝑓 is such that ∫𝑓𝑑𝜇 = 0, then 𝑓 = 0 almost everywhere

5. ∫𝐸 (𝑓 + 𝑔) 𝑑𝜇 = ∫𝐸 𝑓𝑑𝜇 + ∫𝐸 𝑔𝑑𝜇

3.5.1 Convergence Theorems
One of the beauties of measurable functions is that the point-wise limit of measurable
functions is measurable.9 Many functions that aren’t Riemann-integrable are the point-
wise limit of Riemann-integrable functions. Because we have this closedness of the set of
measurable functions, we can talk about the convergence of integrals. We all want to be
able to exchange limits and integrals, and there are good guidelines for when we can when
we are dealing with measurable functions.

8Proving them is not always trivial. The undergraph definition makes some of these very difficult to
compute. This highlights why the two definitions should be seen as complementary, because they make
proving different things often easier.

9This hasn’t actually been proven, but it is a corollary of the theorems below. Ask if you are unsure.
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Theorem 3.5.8 (Monotone Convergence Theorem). Suppose that (𝑓𝑛) ↗ 𝑓 is a non-
decreasing sequence of measurable functions that converges point-wise to 𝑓 almost everywhere.
Then we have that

lim𝑛→∞∫
𝐸
𝑓𝑛 𝑑𝜇 = ∫

𝐸
𝑓 𝑑𝜇

Proof. If measures are upwardly continuous, then this follows immediately from the under-
graph definition of the integral.

This theorem is extremely powerful in that the conditions are easy to check, and it has
wide applicability.

For example, it makes computing integrals fairly straightforward. We need check only
for one sequence of simple functions that converges to a function 𝑓 in order to compute the
integral of 𝑓.

One of the most useful applications is that it gives us an easy way to compute the
integrals of many sums.

Corollary 3.5.9. If (𝑓𝑛) are all measurable, then we have that

∫
𝐸

∞
∑
𝑛=1

𝑓𝑛𝑑𝜇 =
∞
∑
𝑛=1

∫
𝐸
𝑓𝑛𝑑𝜇

Why do we need the monotonicity condition?

Example 3.5.1. Consider the sequence of functions 𝑓𝑛 ∶ [0, 1] → ℝ given by

𝑓𝑛(𝑥) = {
𝑛 if 𝑥 ≤ 1

𝑛

0 else

We have that 𝑓𝑛 → 𝑓(𝑥) ≡ 0 point-wise clearly. However, we have that

∫
[0,1]

𝑓𝑛 = 1 for all 𝑛

but

∫
[0,1]

0 = 0

Does the direction of the monotonicity really matter? It turns out that it does, because
of issues with integrability.10

Example 3.5.2. Consider a sequence of functions 𝑓𝑛 ∶ [0, 1] → ℝ given by

𝑓𝑛(𝑥) = {
0 if 𝑥 = 0

1
𝑛𝑥 else

Then we will have that 𝑓𝑛 ↘ 0 point-wise clearly. However, we have that

∫
[0,1]

𝑓𝑛 = ∞ for all 𝑛

10Recall that a functions is integrable if it is measurable and its undergraph has finite measure.
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This second example motivates the following lemma

Lemma 3.5.10. Suppose that 𝑓𝑛 ↘ 𝑓 with each 𝑓𝑛 integrable. Then we have that

lim𝑛→∞∫
𝐸
𝑓𝑛 = ∫

𝐸
𝑓

Proposition 3.5.11. Suppose that 𝑓𝑛 are all measurable. Then we have that

𝑓
𝑛
(𝑥) ≔ inf

𝑚≥𝑛
𝑓𝑚(𝑥)

is measurable.

Proof. Notice that

𝒰(𝑓
𝑛
) = ⋂

𝑚≥𝑛
𝒰(𝑓𝑚)

These are all measurable, proving the claim.

Both of these examples motivates the following theorem.

Theorem 3.5.12 (Lebesgue Dominated Convergence). Suppose that 𝑓𝑛 are all measurable,
that 𝑓𝑛 → 𝑓 almost everywhere, and there exists a 𝑔 integrable such that 𝑓𝑛 ≤ 𝑔 almost
everywhere for all 𝑛. Then we have that 𝑓 is integrable, and that

lim𝑛→∞∫
𝐸
𝑓𝑛𝑑𝜇 = ∫

𝐸
𝑓

Proof. Define

𝑓
𝑛
(𝑥) ≔ inf

𝑘≥𝑛
𝑓𝑘(𝑥)

𝑓𝑛(𝑥) ≔ sup
𝑘≥𝑛

𝑓𝑘(𝑥)

These functions are both clearly measurable (use the undergraph definition) Then, we have
that 𝑔 ≥ 𝑓𝑛(𝑥) ≥ 𝑓𝑛(𝑥) for all 𝑛, so that all are integrable.

We conclude by first noting that 𝑓𝑛 ↘ 𝑓 and 𝑓
𝑛
↗ 𝑓 and by applying Lemma 3.5.10 and

Theorem 3.5.8.

Corollary 3.5.13. The point-wise limit of measurable functions is measurable.

Proof. Notice that if 𝑓𝑛 → 𝑓, then we have that 𝑓
𝑛
↗ 𝑓. The undergraph of 𝑓 is clearly

then measurable.

There is one last convergence “lemma” that I would like to show you. It is a little more
situational, but it is still relevant to at least have seen.

Lemma 3.5.14 (Fatou’s Lemma). Suppose that (𝑓𝑛) is a sequence of measurable functions.
Then we have that

∫
𝐸

lim inf𝑛 𝑓𝑛 ≤ lim inf∫
𝐸
𝑓𝑛

Proof. Now, we have that lim inf𝑛 𝑓𝑛 = lim𝑛→∞ 𝑓
𝑛

≔𝑓. As we know that 𝑓
𝑛
≤ 𝑓𝑛, we are

done once we “stare at the definition of liminfs.”
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3.5.2 ℒ𝑝 Spaces
I want to return briefly to Definition 3.5.1. Specifically, I want to return to the latter part
of the definition where I defined ℒ𝑝 spaces. These spaces are actually very important in a
wide-range of applications. Specifically, I want to define a (natural) norm on these spaces,
and then talk about two notions of convergence.

Definition 3.5.15. Let (𝑋,𝐴, 𝜇) be a measure space and 𝑝 ∈ [1,∞). Then we define

||⋅||𝑝 ∶ ℒ𝑝 → ℝ

as a norm11 by

||𝑓||𝑝 = (∫|𝑓|𝑝𝑑𝜇)
1/𝑝

Definition 3.5.16 (Convergence in ℒ𝑝). Let (𝑋,𝐴, 𝜇) be a measure space and 𝑝 ∈ [1,∞).
Let (𝑓𝑛) be a sequence in ℒ𝑝 and 𝑓 ∈ ℒ𝑝. Then we say that (𝑓𝑛) converges to 𝑓 in ℒ𝑝 if

||𝑓𝑛 − 𝑓||𝑝 → 0

We will write 𝑓𝑛 →𝑝 𝑓.

We have a final notion of convergence.

Definition 3.5.17 (Convergence in Measure). Let (𝑋,𝐴, 𝜇) be a measure space, and let
(𝑓𝑛) be a sequence of measurable functions. Then we say that (𝑓𝑛) converges to 𝑓 in measure
𝜇 (written 𝑓𝑛 →𝜇 𝑓) if for all 𝜖 > 0 we have

lim𝑛→∞𝜇 ({𝑥 ∈ 𝑋∣ |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜖}) = 0

We have one result that I will state here that will become relevant when we move
to talking about probability theory (soon). It just discusses how the different types of
convergence are nested within one another.

Theorem 3.5.18. If 𝑓𝑛 →𝑝 𝑓 for some 𝑝 ≥ 1, then we have that 𝑓𝑛 →𝜇 𝑓.

Proof. Left as an exercise.

11Technically this is a “semi-norm” because it cannot distinguish because of zero-sets, but I rather consider
this a norm on the equivalence classes of functions that differ only on a measure zero set.
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Chapter 4

Probability Theory

As I’ve discussed (hopefully), there are two main applications for measure theory. The
first is dealing with models where there is a continuum of agents. This has applications in
basically every field, but you see it most commonly in macro.1 The other main application is
in probability theory. This is of course applicable to every field, and is extremely important
foundational to why economics is important.

So, the first thing we need to do is convert the above theory into language that we can
use to describe probability theoretic elements.

So, we start a set of outcomes Ω. We can think of this as describing the underlying
“states of the world.”

Example 4.0.1. A good running example is going to be an environment where we roll two
(independent and fair) six-sided dice. Here, we are going to have that

Ω = {(𝑥, 𝑦)|𝑥, 𝑦 ∈ {1, 2, 3, 4, 5, 6}}

We then are going to bestow a 𝜎-algebra 𝑆 on this space and call this the “Sample Space.”
I like to think about this as sets that we can “see” in the states of the world. In the
above example, we could have that 𝑆 contains all of the outcomes, so that 𝑆 is the discrete
𝜎-algebra. We could also have that 𝑆 distinguishes only between different sums. That is,

𝑆 = 𝜎(𝑟𝑛 ≔ {(𝑥, 𝑦)|𝑥 + 𝑦 = 𝑛} ∣𝑛 ∈ [2, 12] ∩ 𝒵)

We know here that there is a more complicated state space underneath 𝑆, but we can’t
distinguish between whether the roll was (2, 5) and (4, 3). One can call this the “Settlers”
(of Catan) 𝜎-algebra.2

A third possible 𝜎-algebra, which we will call the “Twilight-𝑡” 𝜎-algebra,3 will be defined
as follows:

𝑆 ≔ {{(𝑥, 𝑦)∣one of 𝑥, 𝑦 ≥ 𝑡} , {(𝑥, 𝑦)∣both 𝑥, 𝑦 ≥ 𝑡}}

We will call a set 𝐸 ∈ 𝑆 an event.
1Though, in terms of the technical uses, my understanding is that it is more common in micro theory

than in macro.
2Why not the “Monopoly”? Because there doubles matter. Also, why “Settlers” and not “Catan”? For

two reasons. First, I played Settlers before it was cool, and second, if you are playing with the Cities &
Knights expansion (as you should if you choose to play this sad game) then distinguishing the dice becomes
important.

3Of course, so-named because of “Twilight Imperium.”
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Finally, we need our notion of measure. We will call this the probability measure and
require that 𝑝(Ω) = 1 (because probabilities are at most 1).

If 𝑆 is the discrete 𝜎-algebra, then we would have that 𝑝({(𝑥, 𝑦)}) = 1
36 is the foundation

of the probability measure. If 𝑆 is the Settlers 𝜎-algebra, then we have that

𝑝(𝑟𝑛) =
1
6 − 1

36 |7 − 𝑛|

is the foundation of this probability measure.

Definition 4.0.1. Let Ω be a set, 𝑆 a 𝜎-algebra on Ω, and 𝑝 ∶ 𝑆 → [0, 1] a probability
measure on 𝑆. Then we call the tuple (Ω, 𝑆, 𝑝) a probability space.

With these basic definitions, we can get a lot of characteristics of probability that we
are used to.

4.1 Independence and Bayes’ Rule
Maisie Peters, You Signed Up For This

As important as events are, what is much more important is to how they are related.
We are generally not interested in events in isolation (because that is just a matter of
measuring), but rather how different events influence the probability of other events. For
example, what is the probability that the roll is a six given (or, conditional) on the roll
being even?

We have a few definitions, and then some trivial results.

Definition 4.1.1. Let (Ω, 𝑆, 𝑝) be a probability space. Given 𝐵 ∈ 𝑆 such that 𝑝(𝐵) > 0
we can define the conditional probability of an event 𝐴 given 𝐵 as

𝑝(𝐴|𝐵) ≔ 𝑝(𝐴 ∩ 𝐵)
𝑝(𝐵)

Proposition 4.1.2. 𝑝(⋅|𝐵) is a probability measure on 𝑆.

Proof. Exercise in recalling the definition of a measure, and what is the number 1.

Equipped with the definition of conditional probability, we can define now another clas-
sical term, the independence of two events. Two events are called independent if they have
no relation to one another. If I roll two dice, the probability of the first being a six is
independent of the second being a three.

Definition 4.1.3. Let (Ω, 𝑆, 𝑝) is a probability space. We say that 𝐴,𝐵 ∈ 𝑆 are independent
if

𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴)𝑝(𝐵)

Now suppose that 𝑝(𝐶) > 0. We say that 𝐴,𝐵 are conditionally independent given 𝐶 if

𝑝(𝐴 ∩ 𝐵|𝐶) = 𝑝(𝐴|𝐶)𝑝(𝐵|𝐶)

Notice that this in general is also defined for zero-probability events (which are indepen-
dent of everything, including themselves!).
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Lemma 4.1.4. Events 𝐴,𝐵 are independent if and only if 𝐴,𝐵𝑐 are independent.

Proof. Write out the conditions.

We now get our first result with a name for this chapter.

Theorem 4.1.5 (Bayes’ Rule). Suppose that 𝑝(𝐴), 𝑝(𝐵) ∈ (0, 1). Then we have that

𝑝(𝐵|𝐴) = 𝑝(𝐴|𝐵)𝑝(𝐵)
𝑝(𝐴|𝐵)𝑝(𝐵) + 𝑝(𝐴|𝐵𝑐)𝑝(𝐵𝑐)

Proof. Exercise.

4.2 Random Variables
Valley, Lost in Translation

In most cases, we are interested not only in the underlying state-space, but we are
interested in what is called a “Random Variable,” which is an association between the state-
space and ℝ. Now, it can be easy (for me, at least) to confuse what exactly is happening
here. I think that this comes up a lot because we often think about the state-space as being
itself a subset of ℝ, and then we consider the random variable as simply inclusion (think of
the dice example). My goal is to show which is in general a bad way to think about things,
and to keep them separate. But I am getting ahead of myself.

Definition 4.2.1. We call a function 𝑋 ∶ Ω → ℝ a random variable (with respect to 𝑆) if
𝑋 is measurable (with respect to 𝑆 and the ℬ).

Example 4.2.1. Suppose that we let Ω be as above. Let 𝑋 ∶ Ω → ℝ be defined by
𝑋(𝑥, 𝑦) = 𝑥. Then we have that 𝑋 is a random variable with respect to the discrete
𝜎-algebra, but not with respect to the Settlers 𝜎-algebra.

The former is obvious because any function will be measurable. The second is because,
for instance,

𝑋−1({2}) = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}

which is not measurable with respect to the Settler’s 𝜎-algebra.
Other examples include

𝑋(𝑥, 𝑦) =

⎧{{
⎨{{⎩

0 if 𝑥, 𝑦 < 3
1 if 𝑥 ≥ 3, 𝑦 < 3
1 if 𝑥 < 3, 𝑦 ≥ 3
2 if 𝑥, 𝑦 ≥ 3

or

𝑋(𝑥, 𝑦) = (𝑥 + 𝑦)2

Once we have a random variable, we want to start thinking about the distribution of the
random variable 𝑋.
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Definition 4.2.2. Let (Ω, 𝑆, 𝑝) be a probability space and 𝑋 a random variable. Then the
distribution of 𝑋 (also called the induced probability) of 𝑋 is the (measurable) function

𝑝𝑋 ∶ℬ → ℝ
𝐵 ↦ 𝑝(𝑋−1(𝐵))

We say that 𝑋,𝑌 have the same distribution is 𝑝𝑋 ≡ 𝑝𝑌.

Definition 4.2.3. A random variable 𝑋 is discrete if 𝑃(𝑋 ∈ 𝜒0) = 1, where 𝜒0 =
{𝑥 ∈ ℝ|𝑃 (𝑋 = 𝑥) > 0}. If 𝑋 is discrete, we define the probability mass function of 𝑋 to be
pmf𝑋(𝑥) ≔ 𝑃(𝑋 = 𝑥).

Example 4.2.2. Bernoulli, Uniform for Finite, Binomial, etc. (can use the above state
space).

Definition 4.2.4. A random variable is said to be (absolutely) continuous if there is a
function 𝑓 ∶ ℝ → ℝ such that

𝑝(𝑋 ∈ (𝑎, 𝑏]) = ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥

We call 𝑓 the probability density function of 𝑋.

It is important here that the 𝑥 is taking a value in the co-domain, not the domain of 𝑋:
𝑥 ∈ ℝ, not Ω. Note that if 𝑋 is continuous, then pdf𝑋(𝑥) = 𝜕

𝜕𝑥𝑃(𝑋 ≤ 𝑥).

Example 4.2.3. uniform, exponential, normal, etc.

Definition 4.2.5. For a random variable 𝑋 we define the cumulative distribution function
of 𝑋 to be

cdf𝑋(𝑥) = 𝐹𝑋(𝑥) ≔ 𝑝(𝑋 ≤ 𝑥)

Proposition 4.2.6. Cumulative distribution functions have the following characteristics:

1. 𝐹 is non-decreasing

2. lim𝑥→∞ 𝐹(𝑥) = 1 = 1 − lim𝑥→−∞ 𝐹(𝑥)

3. 𝐹 is right-continuous

4. Defining
𝐹(𝑥−) ≔ lim

𝑦↗𝑥
𝐹(𝑦)

gives us that 𝐹(𝑥−) = 𝑝(𝑋 < 𝑥)

5. 𝑝(𝑋 = 𝑥) = 𝐹(𝑥) − 𝐹(𝑥−)

An equivalent definition of a continuous random variable is that 𝐹𝑋 is a continuous
function. Similarly 𝐹𝑋 being a step function is equivalent to 𝑋 being a discrete random
variable.

It is often convenient for us to talk only in terms of the distributions of functions them-
selves. The problem with doing this and ignoring the state-space is that it can cause us to
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lose sight of the underlying structure. A powerful reason for this is when we start thinking
in terms of more than one random variable.

Suppose that we have two random variables 𝑋,𝑌 on (Ω, 𝑆, 𝑝). We might be interested
in how related these two distributions are. In order to think about that, we need to think
about their joint distribution, which is going to be

𝑝𝑋,𝑌 ∶ℬ2 → ℝ
𝐵 ↦ 𝑝((𝑋, 𝑌 ) ∈ 𝐵)

So now, we care about the probability over a two-dimensional space, and are interested in
how 𝑋 and 𝑌 co-move. Draw some pictures using the dice example.

We can similarly get a cumulative distribution function 𝐹𝑋,𝑌(𝑥, 𝑦) = 𝑝(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦).

Definition 4.2.7. We say that 𝑋,𝑌 are independent if 𝐹𝑋,𝑌 = 𝐹𝑋 ⋅ 𝐹𝑌.

This is actually a result, because the independence would be proved by looking at events
in ℬ2. But this is obviously true by the generating elements of that set.

Thinking about joint random variables only makes sense if there is some underlying
state-space. Otherwise there is no way to talk about two random variables living together.

4.3 Moments
Virginia to Vegas, life gets interesting...

In the above, random variables have been defined in an abstract manner for the most
part. Now, we want to think about situations when the values that random variables take
have some important meaning. Thinking about the number of successes in a dice roll, or
about the random variable being income gives the real number value some relevant meaning.
So, we want to think about what the “average” realization is going to be.

Definition 4.3.1. Let (Ω, 𝑆, 𝑝) be a probability space. Given a random variable, we define
the expected value of 𝑋 as:

𝔼[𝑋] ≔ ∫
𝑆
𝑋𝑑𝑝

where of course this integral is the Lebesgue integral with respect to the measure 𝑝.
If 𝑋 is continuous with pdf 𝑓, we can write this as

𝔼[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥

Here also is where the discussion of ℒ𝑝 spaces becomes important. If 𝔼[𝑋] is well-defined,
we say that 𝑋 ∈ ℒ1(𝑝).4

Definition 4.3.2. We define the 𝑛-th moment of 𝑋 to be

𝔼[𝑋𝑛] = ∫
𝑆
𝑋𝑛𝑑𝑝

4It is unfortunate that we are using 𝑝 here, but it is what the notation is; alas.
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and writing 𝜇 = 𝔼[𝑋], we define the 𝑛-th central moment of 𝑋 to be

𝔼[(𝑋 − 𝜇)𝑛] = ∫
𝑆
(𝑋 − 𝜇)𝑛𝑑𝑝

We will call the second central moment of 𝑋 to be its variance.

There are also names for the third and fourth central moments (skewness and kurtosis).

Proposition 4.3.3. If we have that 𝔼(|𝑋|𝑡) < ∞ for some 𝑡 > 0 then we have 𝔼(|𝑋|𝑠) < ∞
for all 0 ≤ 𝑠 ≤ 𝑡

Proof. Notice that |𝑋|𝑠 ≤ 1 + |𝑋|𝑡.

Now, suppose that 𝑋 has finite expectation. Then we have that

𝔼[𝑋] = ∫
∞

0
𝑃(𝑋 > 𝑧)𝑑𝑧 −∫

0

−∞
𝑃(𝑋 < 𝑧)𝑑𝑧 = ∫

∞

−∞
𝑥𝑑𝐹(𝑥)

In the case that 𝑋 is continuous, then this can easily be shown by integration by parts
(but it holds generally). This representation is useful because it gives us the following result.

Theorem 4.3.4 (Law of the Unconscious Statistician). Let 𝑋 be a random variable, and
𝑔 ∶ ℝ → ℝ measurable. Then 𝑌 = 𝑔(𝑋) is a random variable, with expectations equal to

𝔼[𝑌 ] = ∫𝑔(𝑥)𝑑𝐹(𝑥) or ∑𝑔(𝑥)pmf𝑥(𝑥)

Proof. Assume that 𝑋 is non-negative and 𝑔 ∶ ℝ+ → ℝ+. Then we have that

𝔼[𝑌 ] =∫
∞

0
𝑃(𝑔(𝑋) > 𝑧)𝑑𝑧

=∫
∞

0
∫

Ω
𝟙(𝑔(𝑥) > 𝑧)𝑑𝐹(𝑥)𝑑𝑧 = ∫

Ω
∫

∞

0
𝟙(𝑔(𝑥) > 𝑧)𝑑𝑧𝑑𝐹(𝑥)

=∫
Ω
𝑔(𝑥)𝑑𝐹(𝑥)

Note also that the expectation is a linear functional. This means that we have that

𝔼[𝑎𝑋 + 𝑏] =𝑎𝔼[𝑋] + 𝑏
𝔼[𝑋 + 𝑌 ] =𝔼[𝑋] + 𝔼[𝑌 ]

Notice that the latter again is relying on the definition of a common state space.
A final result that I again appears obvious, but it is important to know.

Theorem 4.3.5. Let 𝑋,𝑌 be two independent random variables. Let 𝑔, ℎ ∶ ℝ → ℝ be
measurable, such that 𝑔𝑋 and ℎ𝑌 have finite expectation. Then we have that

𝔼[𝑔(𝑋)ℎ(𝑌 )] = 𝔼[𝑔(𝑋)] ⋅ 𝔼[ℎ(𝑌 )]

Notice that the converse doesn’t hold in general! This is one of those things that may
not seem obvious but is obvious: take 𝑔 ≡ 0 ≡ ℎ. A more interesting, but similarly intuitive
result is that if this equality holds for all 𝑔, ℎ, then 𝑋,𝑌 are independent. This has the flavour
of calculus of variations to me: we can use local properties to derive global conditions..
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4.4 Inequalities
Billy Raffoul, A Few More Hours at YYZ

One of the things that we often use expectations for is to bound probabilities. I will
state some and hope that this can possible be a dictionary in which you find use at some
point.

Theorem 4.4.1 (Chebychev’s Inequality). Suppose that 𝑋 has mean 𝜇 and variance 𝜎2.
Then we have, for all 𝛼 ≥ 0, that

𝑃 (|𝑋 − 𝜇| ≥ 𝛼𝜎) ≤ 1/𝛼2

Proof. Now, we have that

𝑃 (|𝑋 − 𝜇| ≥ 𝛼𝜎) = 𝔼 [𝟙 (|𝑋 − 𝜇| ≥ 𝛼𝜎)] ≤ 𝔼 [|𝑋 − 𝜇|2
𝛼2𝜎2 𝟙 (|𝑋 − 𝜇| ≥ 𝛼𝜎)] = 1

𝛼2

Theorem 4.4.2 (Markov’s Inequality). Suppose that 𝑋 ≥ 0 (that is, 𝑋 only takes non-
negative values) and has 𝔼[𝑋] = 𝜇 < ∞. Then for all 𝛼 ≥ 0 that

𝑃 (𝑋 ≥ 𝛼) ≤ 𝜇/𝛼

Proof. We have that

𝑃(𝑋 ≥ 𝛼) = ∫
∞

0
𝟙(𝑋 ≥ 𝛼)𝑑𝐹(𝑥) ≤ ∫

∞

0

𝑋
𝛼 𝟙(𝑋 ≥ 𝛼)𝑑𝐹(𝑥) ≤ 𝔼[𝑋/𝛼] = 𝜇

𝛼

Now, the following you should have seen at some point (I hope), although almost certainly
in a different context.

Theorem 4.4.3 (Cauchy-Schwarz). Let 𝑋,𝑌 be two random variables having finite second
moment. Then

(𝔼[𝑋𝑌 ])2 ≤ 𝔼[𝑋2]𝔼[𝑌 2]

The following is a mathematical result and then statistical application with which I have
an unfortunate history. Once you have seen the proof though, it is quite cute and is a useful
result.

Lemma 4.4.4 (Young’s Inequality). Let 𝑝, 𝑞 > 1 be such that 1
𝑝 + 1

𝑞 = 1. Then we have
that for all 𝑥, 𝑦𝑔𝑒𝑞0 that

𝑥𝑦 ≤ 𝑥𝑝

𝑝 + 𝑦𝑞

𝑞
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Proof. First, notice that the result holds for 𝑦 = 0. Now, fix 𝑦 > 0. Then, define the
function

𝜑(𝑥) ≔ 𝑥𝑝

𝑝 − 𝑥𝑦 + 𝑦𝑝

𝑝
We wish to show that this is weakly larger than zero. Notice first that 𝜑(𝑥) is differentiable
at all 𝑥 ≥ 0 (as 𝑝 > 1). Then, we can see explicitly that

𝜑′(0) <0

𝜑′(𝑥0) = 0 ⟺ 𝑥0 = 𝑦
1

𝑝−1

Notice as well that this must be a minimum, as 𝜑′(0) = 0, and the limit is at ∞. Notice
that we have that 1

𝑝−1 = 𝑞 − 1. This means that we have

𝜑(𝑥) ≥ 𝜑(𝑥0) =
𝑦𝑝(𝑞−1)

𝑝 + 𝑦𝑞

𝑞 − 𝑦𝑞 = 𝑦𝑞 (1
𝑝 + 1

𝑞 − 1) = 0

This completes the proof.

In what follows, quickly define ||𝑋||𝑟 ≔ (𝔼[|𝑋|𝑟])1/𝑟.

Theorem 4.4.5 (Hölder’s Inequality). Let 𝑝, 𝑞 > 1 be such that 1
𝑝 + 1

𝑞 = 1. Then we have
that

𝔼[|𝑋𝑌 |] ≤ ||𝑋||𝑝 ||𝑌||𝑞
Proof. Let 𝑈 ≔ 1

||𝑋||𝑝
𝑋 be a random variable, and similarly let 𝑉 ≔ 1

||𝑌||𝑞
𝑌. Then we have

that
𝔼[|𝑋𝑌 |]

||𝑋||𝑝 ||𝑌||𝑞
= 𝔼[|𝑈𝑉 |] ≤ 1

This last inequality follows from Lemma 4.4.4. This proves the claim.

The final inequality is the one that probably you will use the most? I feel at least that
it comes up fairly frequently.
Theorem 4.4.6 (Jensen’s Inequality). Suppose that 𝜑 is convex. Then we have that

𝜑 (𝔼[𝑋]) ≤ 𝔼 [𝜑(𝑋)]

when these both exist and are finite.
Proof. Draw a picture. This is taking averages over more extreme objects, so it works.
Alternatively, see Exercise 5.2.13 for a fun proof.

Notice that the reverse inequality will hold for concave functions 𝜑.
Example 4.4.1. If 0 < 𝑞 ≤ 𝑝 and 𝔼[|𝑋|𝑝] < ∞, then we have that

||𝑋||𝑝 ≥ ||𝑋||𝑞
The proof of this comes immediately from Theorem 4.4.6.
Example 4.4.2. Suppose that 𝑋,𝑌 ∈ ℒ𝑝 for 𝑝 > 1. Then we have that

||𝑋 + 𝑌||𝑝 ≤ ||𝑋||𝑝 + ||𝑌||𝑝
Proof is left as an exercise. Hint: can you use Lemma 4.4.4?
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4.5 Convergence Results
HONNE, Love Me / Love Me Not

This is the last real section of this portion of the course. The purpose is to show two
things. First, averages become averages. Second, everything looks normal if you have
enough observations. We will require a little more notation, but it is likely that you will
have seen all of these results before so I hope that it isn’t overwhelming.

First we state some definitions of the different types of convergence. These are just the
probability theory analogues of the types of convergence in Section 3.5:

Definition 4.5.1. A sequence of random variables 𝑋𝑛 converges to 𝑋

(i) in distribution (𝑋𝑛 →𝑑 𝑋) if 𝑃(𝑋𝑛 ≤ 𝑥) → 𝑃(𝑋 ≤ 𝑥) as 𝑛 → ∞, for all 𝑥.

(ii) in probability (𝑋𝑛 →𝑝 𝑋) if for all 𝜖 > 0,

𝑃 (|𝑋𝑛 −𝑋| > 𝜖) → 0

as 𝑛 → ∞.

(iii) almost surely (𝑋𝑛 →𝑎.𝑠 𝑋) if

𝑃(lim sup
𝑛→∞

|𝑋𝑛 −𝑋| = 0) = 1

(iv) in ℒ𝑝 (𝑋𝑛 →ℒ𝑝
𝑋) for 𝑝 > 0 if

𝔼 (|𝑋𝑛 −𝑋|𝑝) → 0

as 𝑛 → ∞.

How do we think about the difference between all of these definitions? First, we have
the following relationships.

Proposition 4.5.2. We have that

𝑋𝑛 →𝑎.𝑠 𝑋 ⇒ 𝑋𝑛 →𝑝 𝑋 ⇒ 𝑋𝑛 →𝑑 𝑋
𝑋𝑛 →ℒ𝑝

𝑋 ⇒ 𝑋𝑛 →𝑝 𝑋 ⇒ 𝑋𝑛 →𝑑 𝑋

Example 4.5.1. To see why convergence in distribution is so weak, it is very important
to remember the difference between a random variable and its distribution. Consider the
setting as above, but now define two random variables:

𝑋 ≔ 𝟙 (𝜔 ∈ {1, 3, 5})
𝑌 ≔ 𝟙 (𝜔 ∈ {2, 4, 6})

These two random variables have identical distributions, and yet are clearly unrelated in
any meaningful sense.
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Example 4.5.2. To see the difference between almost sure convergence and convergence in
probability, I like the following example. Suppose that 𝑋𝑛 is binary, equal to 1 if the 𝑛-th
product in a line has a defect (it is a 0 if it has a defect). Suppose that 𝑋 is the random
variable that is always 1 (there is no defect). If 𝑋𝑛 →𝑝 𝑋, then this means that eventually
there are no defects. However, there could still be infinitely many defects down the line,
just the probability of there being a defect goes to zero. If 𝑋𝑛 →𝑎.𝑠. 𝑋, then this means
that there are only finitely many total defects.

Example 4.5.3. To see the difference between convergence in probability and convergence
in ℒ𝑝, consider the example of

𝑋𝑛 ≔𝑛 ⋅ 𝟙(𝑥 ≤ 1
𝑛)

𝑋 ≔0

Here, we have that the 𝑋𝑛 → 𝑋 in probability, but for all 𝑝 ≥ 1 they do not converge in
ℒ𝑝.

One nice thing to note is that these definitions tend to our notions of convergence:

Theorem 4.5.3. Let 𝑔 ∈ 𝒞0. Then we have

(a) 𝑋𝑛 →𝑎.𝑠. 𝑋 ⇒ 𝑔(𝑋𝑛) →𝑎.𝑠. 𝑔(𝑋)

(b) 𝑋𝑛 →𝑝 𝑋 ⇒ 𝑔(𝑋𝑛) →𝑝 𝑔(𝑋)

(c) 𝑋𝑛 →𝑑 𝑋 ⇒ 𝑔(𝑋𝑛) →𝑑 𝑔(𝑋)

4.5.1 Law of Large Numbers
The law of large numbers is the first of the main results in this section. What it tells us is
if you observe something enough, it begins to look like its average. There are two common
versions of the theorem, the “weak” and “strong” versions. They are so named because
of the type of convergence that they imply, but it is not that one is strictly better than
the other. There are times when the weak convergence applies and the strong convergence
does not. That being said, these cases actually apply only to extensions of the weak law
(compared to what is written here). I state both because the weak law is easy to prove.
Neither are written in their full generality.

First, the weak version.

Theorem 4.5.4 (Weak Law of Large numbers). Let 𝑋𝑛 be independent random variables
with mean 𝜇. Moreover, let them be such that Var(𝑋𝑛) ≤ 𝜎2 for all 𝑛. Then we have that,
defining

𝑋𝑛 ≔1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

that

𝑋𝑛 →𝑝 𝜇

Proof. By Chebyshev’s inequality.
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Now, the strong version.

Theorem 4.5.5 (Strong Law of Large Numbers). Let 𝑋𝑛 be independent random variables
with mean 𝜇 and finite variances Var(𝑋𝑛) ≤ 𝜎2, then we have that

𝑋𝑛 →𝑎.𝑠. 𝜇

Proof. Much more complicated, and beyond our scope.

4.5.2 Central Limit Theorem
This second statement is that, if you squint hard enough, deviations look normal. As with
the law of large numbers, there are many varying statements of this theorem. I present just
one, because it is feasible:

Theorem 4.5.6 (Central Limit Theorem). Let 𝑋𝑛 be i.i.d. random variables with mean 𝜇
and variance 𝜎2. Then, defining

𝑍𝑛 ≔
√
𝑛 ⋅ 𝑋𝑛 − 𝜇

𝜎

we have that

𝑍𝑛 →𝑑 𝒩(0, 1)

The Law of Large numbers states that averages go to averages. The Central Limit
Theorem tells us how quickly things go to their averages.

Theorem 4.5.7 (𝛿-Method). Suppose that 𝑋𝑖 is a sequence of random variables, and 𝑎𝑛 a
sequence of real numbers such that 𝑎𝑛 → ∞. Then if

𝑎𝑛(𝑋𝑛 − 𝜇) →𝑑 𝑍

for some random variables 𝑍, and some constant 𝜇, then for all 𝑔 ∈ 𝒞1, we have

𝑎𝑛 (𝑔(𝑋𝑛) − 𝑔(𝜇)) →𝑑 𝑔′(𝜇)𝑍

Why is this important? The application typically is to the central limit theorem (which
is why I include it in this section). It allows us to easily apply transformations to random
variables, and then compute what their asymptotic variance will be.

Aside: When we are discussing these 𝑋𝑛 as sequences, we are thinking about them as be-
ing defined on the same state space. This can be hard to think about in standard examples,
where we like to think about the 𝑋𝑛 as different “realizations” of the same state space. For
instance, in the dice example, we think about re-rolling the dice. How can we square these
ideas?

The simplest way is to think about this is a very rich state-space, with some notion of
independence between each of the “realizations.” Take a (simpler) example of rolling a single
die. We would have that

Ω𝑖 = {1, 2, 3, 4, 5, 6}
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Endowed with the discrete 𝜎-algebra, and a uniform probability measure: 𝑝𝑖({𝜔}) = 1
6 .

We can then think of the entire state space as being

Ω = Ω1 ×Ω2 × ... =
∞
∏
𝑖=1

Ω𝑖

With the corresponding product measure,5 where we define

𝑝(
∞
∏
𝑖=1

𝐸𝑖) =
∞
∏
𝑖=1

𝑝𝑖(𝐸𝑖)

We can then think of the 𝑋𝑖 as being equal to

𝑋𝑖(𝜔) = 𝑋𝑖 ((𝜔1, 𝜔2, ..., )) = 𝑋𝑖(𝜔𝑖)

This would mean that each 𝑋𝑖 only depends on 𝜔𝑖.
In general, it is often better in these settings to forego talking about the state space, since

it becomes so complicated (see my footnote above). We will instead simply say that the
𝑋𝑛 are “independent.” In this case, we can’t talk about complicated notions of convergence,
because they depend very much on the underlying state space.

4.6 Examples of Random Variables
Bombay Bicycle Club, Everything Else Has Gone Wrong

We have one definition.

Definition 4.6.1. For 𝑋 a random variable, we define the moment generating function of
𝑋: mgf𝑥(𝑡) ≔ 𝔼[𝑒𝑡𝑋].

And also, one result.

Lemma 4.6.2. If 𝔼[𝑋𝑘] exists, then it is given by

𝔼[𝑋𝑘] = 𝜕𝑘

𝜕𝑥𝑘 mgf𝑋(𝑡)∣
𝑡=0

Discrete Random Variables
∘ Bernoulli: parameterized by 𝑝 ∈ [0, 1]

𝑓(1) =𝑝
𝑓(0) =1 − 𝑝

Properties:

𝜇 =𝑝
𝜎2 =𝑝(1 − 𝑝)

𝑀(𝑡) =𝑝𝑒𝑡 + (1 − 𝑝)
5I don’t actually know how to formalize this considering we are taking an infinite product. My guess is

that you get extreme issues like in the topological setting, and need some way to deal with these issues.
This aside is meant as a thought-exercise, so do not take it as a rigorous exposition.
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∘ Binomial: parameterized by 𝑝 probability of success and 𝑛 number of trials

𝑓(𝑘) =(𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘

Properties:

𝜇 =𝑛𝑝
𝜎2 =𝑛𝑝(1 − 𝑝)

𝑀(𝑡) = [𝑝𝑒𝑡 + (1 − 𝑝)]𝑛

∘ Geometric: parameterized by probability of success 𝑝

𝑓(𝑘) = 𝑝(1 − 𝑝)𝑘−1

Properties:

𝜇 =1
𝑝

𝜎2 =1 − 𝑝
𝑝2

𝑀(𝑡) = 𝑝𝑒𝑡

1 − (1 − 𝑞)𝑒𝑡

∘ Poisson: parameterized by 𝜆

𝑓(𝑘) = 1
𝑘!𝜆

𝑘𝑒−𝜆

Properties:

𝜇 =𝜆
𝜎2 =𝜆

𝑀(𝑡) = exp (𝜆(𝑒𝑡 − 1))

∘ Negative Binomial: parameterized by 𝑝 and 𝑛

𝑓(𝑘) = (𝑘 − 1
𝑛 − 1)𝑝𝑛(1 − 𝑝)𝑘−𝑛 𝑘 ≥ 𝑛

Properties:

𝜇 =𝑛
𝑝

𝜎2 =𝑛(1 − 𝑝)
𝑝2

𝑀(𝑡) =[ 𝑝𝑒𝑡

1 − (1 − 𝑞)𝑒𝑡 ]
𝑛
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Continuous Random Variables
∘ Uniform: parameterized by 𝑎, 𝑏

𝑓(𝑥) = {0 if 𝑥 ∉ [𝑎, 𝑏]
1

𝑏−𝑎 if 𝑥 ∈ [𝑎, 𝑏]

Properties:

𝜇 =𝑎 + 𝑏
2

𝜎2 =(𝑏 − 𝑎)2

12

𝑀(𝑡) ={
𝑒𝑡𝑏−𝑒𝑡𝑎

𝑡(𝑏−𝑎) if 𝑡 ≠ 0
1 if 𝑡 = 0

∘ Exponential: parameterized by 𝜆

𝑓(𝑥) = {0 if 𝑥 < 0
𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0

Properties:

𝜇 =1
𝜆

𝜎2 = 1
𝜆2

𝑀(𝑡) = 𝜆
𝜆 − 𝑡

∘ Normal: parameterized by 𝜇, 𝜎2

𝑓(𝑥) = 1
√
2𝜋𝜎2

exp(−(𝑥 − 𝜇)2

2𝜎2 )

Properties:

𝜇 =𝜇
𝜎2 =𝜎2

𝑀(𝑡) = exp(𝜇𝑡 + 𝜎2𝑡2
2 )

∘ Gamma: parameterized by 𝜆 and 𝑟

𝑓(𝑥) = {
0 if 𝑥 < 0

𝜆𝑟

(𝑟−1)!𝑥
𝑟−1𝑒−𝜆𝑥 if 𝑥 ≥ 0

Properties:

𝜇 = 𝑟
𝜆

𝜎2 = 𝑟
𝜆2

𝑀(𝑡) =(1 − 𝑡
𝛽)

−𝛼
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∘ Beta: parameterized by 𝛼, 𝛽

𝑓(𝑥) = 𝛽𝛼

Γ(𝛼)𝑥
𝛼−1𝑒−𝛽𝑥

Properties:

𝜇 = 𝛼
𝛼 + 𝛽

𝜎2 = 𝛼𝛽
(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)

𝑀(𝑡) =1 +
∞
∑
𝑘=1

(
𝑘−1
∏
𝑟=0

𝛼 + 𝑟
𝛼 + 𝛽 + 𝑟)

𝑡𝑘
𝑘!
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Chapter 5

Exercises

5.2 Optimization Exercises
Exercise 5.2.1. True/False:

∘ Let 𝑓 ∶ 𝑋 → ℝ be strictly concave and 𝑋 convex, open. Let 𝐴 ⊆ 𝑋 be compact and
nonempty. Then 𝑓 has a unique maximizer in 𝐴.

∘ All concave functions are continuous.

Exercise 5.2.2. Let 𝑓 ∈ 𝒞2(ℝ). Suppose that there exists an 𝜖 > 0 such that 𝑓″(𝑥) > 𝜖
for all 𝑥 ∈ ℝ. Prove that 𝑓 has a unique global minimum. Hint: Show that 𝑓 ′(𝑥) = 0 for
some 𝑥 ∈ ℝ.

Exercise 5.2.3. Fix an 𝛼 ∈ ℝ. Let 𝑓𝛼 ∶ ℝ2 → ℝ be defined as 𝑓𝛼(𝑥, 𝑦) ≔ (1 + 𝛼)𝑥2 +
𝛼𝑦2 + 2𝑥𝑦 + 7𝑦.

(a) For each 𝛼, find the points, if any, satisfying the first-order necessary condition for a
local minimum.

(b) For which 𝛼 do those in (a) satisfy the second-order necessary condition for a local
minimum?

(c) For which 𝛼 do those in (b) satisfy the second-order sufficient condition for a local
minimum?

(d) For which 𝛼 are those in (c) a global minimum? Prove the claim.

Exercise 5.2.4. Consider the following minimization problem:

𝑓(𝑥, 𝑦, 𝑧) ≔ (𝑥 − 𝑦
3)

2
+ 1

4(𝑧 + 𝑥)2 + 𝑧2 − 2024

ℎ(𝑥, 𝑦, 𝑧) ≔ (𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)2(𝑥 − 2𝑦)

We aim to minimize 𝑓(𝑥, 𝑦, 𝑧) subject to ℎ(𝑥, 𝑦, 𝑧) = 0.

(a) Determine which feasible points have ∇ℎ(𝑥, 𝑦, 𝑧) ≠ 0. Why is this important to check?
Hint: What does the full rank condition mean here?

(b) Determine the minimizer of the problem. Does problem (a) become restrictive here?

Exercise 5.2.5. On the set {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ≤ 1}, find the extreme values of
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1. 𝑓(𝑥, 𝑦) = 2𝑥2 + 𝑦2 + 2𝑥

2. 𝑓(𝑥, 𝑦) = 3𝑥2 − 2𝑦2 + 2𝑦

Exercise 5.2.6. Show that the following functions have a global maximum and minimum
on ℝ2, and find them:

1. 𝑓(𝑥, 𝑦) = (𝑥2 − 2𝑦2)𝑒−(𝑥2+𝑦2)

2. 𝑓(𝑥, 𝑦) = (𝑥2 + 2𝑦2)𝑒−(𝑥2+𝑦2)

Hint: Don’t do the problem twice.

Exercise 5.2.7. Find the points of the ellipse 5𝑥2 − 6𝑥𝑦 + 5𝑦2 = 4 for which the tangent
is at the greatest distance from the origin. Hint: Notice that this is a double optimization
problem. First, for a given point on the ellipse, we need to find the point on its tangent
that is closest to the origin. Or, do we? Draw a picture and use some intuition.

Exercise 5.2.8. Let 𝑥1, ..., 𝑥𝑛 denote nonnegative numbers. For 𝑐 > 0, maximize the
product 𝑥1 ⋅ ... ⋅ 𝑥𝑛 subject to the constraint 𝑥1 + ...𝑥𝑛 = 𝑐. From here, derive the inequality
of geometric and arithmetic means,

(𝑥1 ⋅ ... ⋅ 𝑥𝑛)1/𝑛 ≤ 𝑥1 + ... + 𝑥𝑛
𝑛

Exercise 5.2.9. Suppose that we have a limited amount of fencing and wish to maximize
the total area generated by a circular and rectangular pen.

(a) Write down the problem that we are trying to solve. What are our choice variables?
Is there any way to reduce the number of choice variables?

(b) Solve this problem using inequality constraints

(c) Solve this problem using a substitution and first-year calculus. What does this teach
us?

Exercise 5.2.10. Consider the following problem:

max
𝑐,𝑑,𝑥,𝑦

𝑢(𝑐) + 𝑢(𝑑)

such that

𝑐 + 𝑥 ≤ 𝑤
𝑑 + 𝑦 ≤ 𝑓(𝑥)

𝑐, 𝑑, 𝑥, 𝑦 ≥0

for a fixed 𝑤 > 0, and 𝑢, 𝑓 are nondecreasing 𝒞2 functions.

(a) What additional assumptions (if any) are necessary for this problem to have a solution?

(b) What additional assumptions (if any) are necessary so that the solution, when it exists,
is unique?
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(c) Write down the problem as a standard problem of inequality constraints and derive
the standard Kuhn-Tucker conditions. What additional assumptions are needed so
that these conditions completely characterize the solution set?

(d) Assume now that 𝑢 is strictly increasing. Show that the optimal solution must have
𝑐 + 𝑥 = 𝑤 and 𝑑 + 𝑦 = 𝑓(𝑥). Can we use this to reduce the number of constraints?

Exercise 5.2.11. In this exercise we imagine that we are a firm that is aiming to hit a
target output while minimizing their cost (that is, this is the “cost minimization problem”
(CMP) of the firm). Specifically, a firm produces a single output 𝑦 ≥ 0 using outputs 𝑧 ∈ ℝ𝑛

+
given the production function 𝑓 ∶ ℝ𝑛

+ → ℝ. The prices for inputs are given by 𝑤 ∈ ℝ𝑛
++.

We can state the problem as

min𝑧 ⟨𝑤, 𝑧⟩

such that

𝑓(𝑧) ≥ 𝑦
𝑧 ≥ 0

We assume that 𝑓 ∶ ℝ𝑛
+ → ℝ is continuous and the set {𝑧 ∈ ℝ𝑛

+|𝑓(𝑧) ≥ 𝑦} is nonempty.

(a) Prove that the firm’s cost minimization problem has a solution for any 𝑤 ≫ 0. In
what follows, denote the solution (correspondence) by 𝑧(𝑤) as a function of 𝑤.

(b) Suppose that 𝑧∗ ∈ 𝑧(𝑤) is such that 𝑧∗ ≠ 0. Prove that 𝑓(𝑧∗) = 𝑦.

(c) Let 𝑐(𝑤) ≔ ⟨𝑤, 𝑧(𝑤)⟩. First note that this is well-defined, even though it is an abuse
of notation. We call this the firm’s “cost function.” Prove that 𝑐(𝑤) is concave.

(d) Assume now that 𝑧(𝑤) is single-valued for all 𝑤. Prove that 𝑧𝑖(𝑤) is nonincreasing in
𝑤𝑖 for any 𝑖 and 𝑐(𝑤) is nondecreasing in 𝑤𝑖.

Now assume that 𝑓 ∈ 𝒞2 and 𝑧(𝑤) is single valued (what assumption can we make on 𝑓 for
the latter to hold?)

(e) Write down the Kuhn-Tucker conditions for a minimum. Under what conditions on 𝑓
are these necessary and sufficient for a solution?

(f) Under the conditions you give in part (e), calculate 𝐷𝑤𝑧(𝑤).

Exercise 5.2.12. Consider a consumer who lives for 𝑇 > 0 periods. At the beginning of
each period 1 ≤ 𝑡 ≤ 𝑇, this consumer must decide his consumption 𝑐𝑡 ≥ 0 for the current
period and saving 𝑠𝑡 ≥ 0 for the next period, given his saving 𝑠𝑡−1 from the previous period.
Denote by 𝑠0 ≥ 0 the initial saving. The consumer maximizes his lifetime utility

𝑈(𝑠0) ≔ max𝑐𝑖,𝑠𝑖

𝑇
∑
𝑡=1

𝑢(𝑐𝑡)

such that

𝑐𝑡 + 𝑠𝑡 ≤ 𝑓(𝑠𝑡−1) for all 1 ≤ 𝑡 ≤ 𝑇
𝑐𝑡, 𝑠𝑡 ≥ 0 for all 1 ≤ 𝑡 ≤ 𝑇

where 𝑢 is the period utility function and 𝑓 is the production function. Assume 𝑢, 𝑓 ∈ 𝒞0.
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(a) Defining

𝐶(𝑠0) ≔ {(𝑐1, ..., 𝑐𝑇, 𝑠1, ..., 𝑠𝑇) ∈ ℝ2𝑇
+ ∣ 𝑐𝑡 + 𝑠𝑡 ≤ 𝑓(𝑠𝑡−1), 1 ≤ 𝑡 ≤ 𝑇}

as the constraint set (parameterized by 𝑠0). Prove that 𝐶(𝑠0) is compact, so that the
problem has a solution.

(b) Prove that 𝐶 as a correspondence is continuous.

(c) Prove that 𝑈 is continuous and (weakly) increasing.

(d) Assume that 𝑢 ∈ 𝒞1(0,∞), with 𝑢′(𝑐) > 0 and lim𝑐↘0 𝑢′(𝑐) = ∞ (the “Inada” condi-
tion). Assume moreover that 𝑓 is strictly increasing with 𝑓(0) = 0. Prove that any
optimal solution must satisfy 𝑐𝑡 > 0 for all 1 ≤ 𝑡 ≤ 𝑇 and 𝑠𝑡 > 0 for all 1 ≤ 𝑡 < 𝑇.

(e) From now on, suppose that 𝑢, 𝑓 ∈ 𝒞2(0,∞) and are both strictly increasing and
strictly concave. Moreover, suppose that 𝑢 satisfies the Inada condition. Prove that
the optimization problem has a unique solution.

(f) Given any 𝑠0 > 0 prove that the optimal solution must satisfy
𝑢′(𝑐𝑡)
𝑢′(𝑐𝑡+1)

= 𝑓 ′(𝑠𝑡) for all 1 ≤ 𝑡 ≤ 𝑇 − 1

What does this mean if 𝑓(𝑠) = 𝑠?

(g) Consider now 𝑇 = 2. Prove that both 𝑐1 and 𝑐2 strictly increase with 𝑠0.
Exercise 5.2.13. Let 𝑓 ∶ ℝ𝑛 → ℝ be concave (and hence also continuous).

(a) Prove that the super-graph of 𝑓, which is defined by

𝐺(𝑓) ≔ {(𝑥, 𝑦)|𝑦 ≥ 𝑓(𝑥)}

is closed and convex.

(b) State the supporting hyperplane theorem.

(c) Using the above, prove Proposition 2.4.10.

(d) Prove Proposition 2.4.11.

(e) Prove the following theorem:
Theorem 5.2.14 (Benveniste and Scheinkman). Let 𝑉 ∶ ℝ𝑛 → 𝔹 be concave, let
𝑥0 ∈ ℝ, and let 𝐵𝜖 = 𝐵𝜖(𝑥0) . Let 𝑊 ∶ 𝐵𝜖 → ℝ be concave, differentiable with
𝑊(𝑥0) = 𝑉 (𝑥0) and 𝑊(𝑥) ≤ 𝑉 (𝑥) for all 𝑥 ∈ 𝐵𝜖, then 𝑉 is differentiable at 𝑥0 and
∇𝑉 (𝑥0) = ∇𝑊(𝑥0).

(f) Let 𝑋 ⊆ ℝ𝑛 be convex and compact, 𝐴 = (0, 1) and 𝑓 ∶ 𝑋 ×𝐴 → ℝ with 𝑓 ∈ 𝒞1 and
concave. Define

𝑉 (𝑎) ≔max
𝑥∈𝑋

𝑓(𝑥, 𝑎)

𝑋∗(𝑎) ≔ argmax𝑥∈𝑋 𝑓(𝑥, 𝑎)

Using the above, show that 𝑉 is well-defined, concave, and differentiable on 𝐴.

(g) (For after you have learned Probability Theory.) Use the above to provide another
proof of Jensen’s Inequality (Theorem 4.4.6).
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5.3 Measure Theory Exercises
Exercise 5.3.1. Assume that 𝐸𝑗, 𝑗 = 1, ... is a countable collection of measurable subsets
of ℝ such that lim𝑛→∞ 𝑚(𝐸𝑗) = 0.

1. Let 𝐴 denote the points which belong to all but finitely many of these sets 𝐸𝑗. Show
that 𝐴 is measurable.

2. Show that 𝑚(𝐴) = 0.

3. Let 𝐵 denote the points which belong to infinitely many of these 𝐸𝑗. Show that 𝐵 is
measurable.

4. Is it true that 𝑚(𝐵) = 0?

Exercise 5.3.2. Prove that every closed set in ℝ is a 𝐺𝛿 set. Does it follow that every
open set is an 𝐹𝜎-set?

Exercise 5.3.3. Show that every hyperplane in ℝ𝑛 is a zero-measure set. Hint: Start with
those that are parallel to the axes. (Proposition 3.1.4.)

Exercise 5.3.4. Let 𝑀 be an arbitrary set. Define 𝜔 ∶ 2𝑀 → [0,∞] by 𝜔(𝑆) = |𝑆|. Prove
that 𝜔 is a measure, and all sets are measurable. This is called the counting measure.

Exercise 5.3.5. Define the following function on 2ℕ.

𝜇(𝐸) ≔ {0 if 𝐸 = ∅
∑𝑛∈𝐸

1
2𝑛 if 𝐸 ≠ ∅

Show that 𝜇 is a measure on ℕ. What is 𝜇(ℕ)? What is 𝜇({2𝑘|𝑘 ∈ ℕ})?

Exercise 5.3.6. Let (Ω,ℱ, 𝜇) be a measure space with 𝜇 a finite measure (that is, 𝜇(Ω) <
∞).

(a) Show that for every nested decreasing sequence of sets {𝐴𝑛}𝑛 in ℱ we have that
lim𝑛→∞ 𝜇(𝐴𝑛) = 𝜇(∩𝑛𝐴𝑛).

(b) Consider now a finite measure on (ℝ, ℬ), and define 𝐹(𝑥) ≔ 𝜇((−∞,𝑥]) for all 𝑥 ∈ ℝ.
Show that

(i) 𝐹 is right-continuous
(ii) lim𝑥→−∞ 𝐹(𝑥) = 0

Exercise 5.3.7. Let (𝑋,𝐴𝑋), (𝑌 ,𝐴𝑌), and (𝑍,𝐴𝑍) be measurable spaces. Let 𝑓 ∶ 𝑋 → 𝑌
and 𝑔 ∶ 𝑌 → 𝑍 be measurable functions (with respect to these algebras). Show that
𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 is measurable.

Exercise 5.3.8. Show that 𝑓 ∶ [0, 1] → ℝ defined by

𝑓(𝑥) ≔ 𝟙 (𝑥 ∈ [0, 1] ∖ ℚ)

is measurable. Compute

∫
[0,1]

𝑓𝑑𝜇
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Exercise 5.3.9. Let 𝑔𝑛 be a sequence of non-negative integrable functions which converge
almost everywhere to an integrable function 𝑔. Let 𝑓𝑛 be a sequence of measurable functions
such that

|𝑓𝑛(𝑥)| ≤ 𝑔𝑛(𝑥)

for all 𝑥, and assume that 𝑓𝑛 converges to a limit 𝑓 almost everywhere as 𝑛 → ∞. Prove
that if

∫𝑔𝑛 →𝑛→∞ ∫𝑔

then

∫𝑓𝑛 →𝑛→∞ ∫𝑓

Hint: Apply Fatou’s Lemma to 𝑔𝑛 + 𝑓𝑛 and 𝑔𝑛 − 𝑓𝑛.

Exercise 5.3.10. Assume that 𝑓 ∶ ℝ → [0,∞) is integrable. Show that integrability does
not imply that

lim
|𝑥|→∞

𝑓(𝑥) = 0

However, if one assumes that, in addition to being integrable, 𝑓 is also uniformly continuous,
is it true that

lim
|𝑥|→∞

𝑓(𝑥) = 0?

Exercise 5.3.11. We show here that translation is continuous with respect to integration.
That is, we show, for 𝑓 integrable, that

∫|𝑓(𝑥 + ℎ) − 𝑓(𝑥)| →ℎ→0 0

1. Show that this holds if 𝑓 is continuous of compact support.

2. Show how one can properly approximate simple functions by continuous functions of
compact support.

3. Use 1 and 2 to conclude.

Exercise 5.3.12. Show that ℒ1(ℝ) neither contains nor is contained by ℒ2(ℝ). Keep this
exercise in mind.

5.4 Probability Theory Exercises
Exercise 5.4.1. Let 𝑋 be a discrete random variable whose probability mass function 𝑓𝑋
is symmetric with respect to 0, and has 𝑓𝑋(0) = 0. Let

𝐽 ≔
⎧{
⎨{⎩

1 if 𝑋 > 0
0 if 𝑋 = 0
−1 if 𝑋 < 0

Show that |𝑋| and 𝐽 are independent.
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Exercise 5.4.2. Let 𝑁,𝑋1, 𝑋2, ... be random variables where 𝑁 ∈ ℕ and the 𝑋𝑖 are i.i.d.
Moreover, suppose that 𝑋𝑖 and 𝑁 are independent, for all 𝑖. Show that

𝔼(
𝑁
∑
𝑖=1

𝑋𝑖) = 𝔼(𝑁)𝔼(𝑋𝑖)

Exercise 5.4.3. Consider the sequence of random variables 𝑋1, ... with pdfs given by

𝑓𝑛(𝑥) = 1 + cos(2𝜋𝑛𝑥)

for 𝑥 ∈ [0, 1].

(a) Show that 𝑋𝑖 is indeed a random variable.

(b) Show that {𝑋𝑖}𝑖 converges in distribution. Find the cdf of the limit distribution.

Exercise 5.4.4. Suppose that 𝑋1 ∼ 𝑁(𝜇, 𝜎2) and 𝑋2 ∼ 𝑁(3𝜇, 4𝜎2) are independent.

(a)

5.5 Review Session 1
Exercise 5.5.1 (Functional Optimization Practice). Let 𝑎 ∈ ℝ and consider a function 𝑢.
Solve for the distribution 𝑝(𝑥) that achieves the maximum entropy

ℋ(𝑝) ≔ −∫𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥

subject ot the constraints that

𝔼𝑝[𝑢(𝑋)] ≔ ∫𝑢(𝑥)𝑝(𝑥)𝑑𝑥 = 𝑎

In particular, show that it is in the exponential family with sufficient statistic 𝑢(𝑥).

Solution. We have that there are two equality constraints; because 𝑝 is a distribution we
must have that

∫𝑝(𝑥) = 1

So, we can write

𝒢1[𝑝] = ∫𝑢(𝑥)𝑝(𝑥)𝑑𝑥

𝒢2[𝑝] = ∫𝑝(𝑥)𝑑𝑥

We then have that

𝜕
𝜕𝑝ℋ[𝑝] = − log 𝑝(𝑥) − 1 𝜕

𝜕𝑝𝒢1[𝑝] = 𝑢(𝑥) 𝜕
𝜕𝑝𝒢2[𝑝] =1
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We can then conclude that we have

log(𝑝) + 1 = 𝜆1𝑢(𝑥) + 𝜆2

for some 𝜆1, 𝜆2 ∈ ℝ. We conclude that we must have that

𝑝(𝑥) = 𝑐 exp (𝜆1𝑢(𝑥))

for some 𝑐 ∈ ℝ. We conclude that 𝑝 must belong to the exponential family.

Exercise 5.5.2 (Non-differentiable Practice 1). Solve the following maximization problem
using sub-differentials as a function of the parameter 𝑏 ≥ 0:

max |𝑥| + |𝑦|

subject to

𝑏|𝑥| + |𝑦| ≤ 1

Solution. We first proceed by computing the sub-differentials of the objective function 𝑓
and the constraint function 𝑔:

𝜕|𝑥| =
⎧{
⎨{⎩

{−1} if 𝑥 < 0
[−1, 1] if 𝑥 = 0
{1} if 𝑥 > 0

and

𝜕|𝑦| =
⎧{
⎨{⎩

{−1} if 𝑦 < 0
[−1, 1] if 𝑦 = 0
{1} if 𝑦 > 0

We can then compute

𝜕𝑓(𝑥, 𝑦) = 𝜕|𝑥| × 𝜕|𝑦|

similarly, we have that

𝜕𝑔(𝑥, 𝑦) = (𝑏 ⋅ 𝜕|𝑥|) × 𝜕|𝑦|

We now look at the different cases. Suppose first that we are at a situation where neither
𝑥 nor 𝑦 was equal to 0. Then, at a maximum we would need to have

(±1
±1) = 𝜇(±𝑏

±1)

First need that we need to have that 𝜇 ≥ 0. So, for equality in the second element we must
have that 𝜇 = 1. However, then we will not have equality for the first element, unless 𝑏 = 1
(but of course in this case the optimization is trivial).
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We now must consider the cases that 𝑥 = 0 and 𝑦 = 0. Notice that we cannot have both
simultaneously at a maximum trivially. Suppose first that 𝑥 = 0. Then we need, for a local
maximum, for every 𝑐1 ∈ [−1, 1] that there exists 𝑐2 ∈ [−1, 1] such that

( 𝑐1
±1) = 𝜇(𝑏𝑐2

±1)

Again, we get that 𝜇 = 1, so that we have that we need

𝑐1 = 𝑏𝑐2

So, we need to have that 𝑐1/𝑏 ∈ [−1, 1], so that this is a candidate for a local maximum
only if 𝑏 ≥ 1. Now, we consider the case that 𝑦 = 0. Then, similarly, for every 𝑐1 ∈ [−1, 1]
that there exists 𝑐2 ∈ [−1, 1] such that

(±1
𝑐1

) = 𝜇(±𝑏
𝑐2

)

We then need that 𝜇 = 1/𝑏. So, we would need 𝑏𝑐1 ∈ [−1, 1], so that this is only a local
maximum when we have that 𝑏 ≤ 1.

Exercise 5.5.3 (Non-differentiable Practice 2). Solve the following maximization problem
using sub-differentials as a function of the parameter 𝑏:

max {𝑥, 𝑦}

subject to

|𝑥 − 𝑦| + 𝑏|𝑥| ≤ 1

Solution. We first begin by computing the sub-differentials as in the above. Notice that in
general this is a much harder problem to solve without any work, because it is not obvious
what the constraint set looks like. First, for the objective function 𝑓

𝜕𝑓(𝑥, 𝑦) =
⎧{
⎨{⎩

{(1, 0)} if 𝑥 > 𝑦
{(0, 1)} if 𝑥 < 𝑦
{(1 − ℓ, ℓ)|ℓ ∈ [0, 1]} if 𝑥 = 𝑦

To visualize this, draw a picture (and explain it). Now, we look at the constraint function.
We get two portions. The first is trivial.

𝜕|𝑥| =
⎧{
⎨{⎩

{−1} if 𝑥 < 0
[−1, 1] if 𝑥 = 0
{1} if 𝑥 > 0

The second is trickier:

𝜕|𝑥 − 𝑦| =
⎧{
⎨{⎩

{(1,−1)} if 𝑥 > 𝑦
{(−1, 1)} if 𝑥 < 𝑦
{(−ℓ, ℓ)|ℓ ∈ [−1, 1]} if 𝑥 = 𝑦
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To visualize this, draw a picture. To actually optimize, we consider several cases (as before).
First, it is obvious that we should never have a negative 𝑥. So, we can reduce to the case
that 𝑥 ≥ 0 (explain). Then, suppose that we do not have 𝑥 = 0 and we do not have that
𝑥 = 𝑦. Then, if 𝑥 > 𝑦, we would need to satisfy

(1
0) = 𝜇(𝑏 + 1

−1 )

This is clearly impossible. If 𝑥 < 𝑦, we would need to satisfy

(0
1) = 𝜇(𝑏 − 1

1 )

This is also clearly impossible, unless 𝑏 = 1. In this case, then any point with 𝑥 < 𝑦 on the
boundary will be a candidate.

Now, we check the corners. First, we suppose that 𝑥 = 0. Then, we must satisfy 𝑥 < 𝑦
that there exists some 𝑐1 ∈ [−1, 1] such that

(0
1) = 𝜇(𝑏𝑐1 − 1

1 )

Here, we need to have that 𝜇 = 1, so that we would need to have that 𝑏 ≥ 1. In this case,
(0, 1) would be a candidate for a maximizer.

The final case to check is that 𝑥 = 𝑦 = 1
𝑏 . Here, we would need, for every ℓ1 ∈ [0, 1]

there to exist and ℓ2 ∈ [−1, 1] such that

(1 − ℓ1
ℓ1

) = 𝜇(𝑏 − ℓ2
ℓ2

)

Notice that here we would need to have that 𝜇ℓ2 = ℓ1 (so that ℓ2 ≥ 0 as 𝜇 ≥ 0), which
reduces the constraint to

1 − ℓ1 =𝜇𝑏 − ℓ1

⇒ 1 =𝜇𝑏
⇒ ℓ2 =𝑏ℓ1

This requires that 𝑏 ≤ 1. In this case, we will have the point (1/𝑏, 1/𝑏) being the local
maximizer.

Exercise 5.5.4 (Inequality Constraint Practice 1). Let 𝐿 > 0 be the length of a piece of
wire. Suppose that you use the wire to make a circle of radius 𝑟 and a square of side 𝑠. We
aim to maximize the total area of the circle and the square:

max𝐴(𝑟, 𝑠) = 𝜋𝑟2 + 𝑠2

subject to the following:

2𝜋𝑟 + 4𝑠 =𝐿𝑟, 𝑠 ≥ 0

Solution. We need to have then that the system that we must solve is

(2𝜋𝑟
2𝑠 ) + 𝜆(2𝜋

4 ) + 𝜇1 (
1
0) + 𝜇2 (

0
1) = 0
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Here we need to have that

𝜇1𝑟 = 𝜇2𝑠 = 0

and that 𝜇𝑖 ≥ 0 for 𝑖 = 1, 2. First, consider the case that we have 𝑟, 𝑠 ≠ 0. Then both
values of 𝜇 are 0 by complementary slackness. We then solve

(2𝜋𝑟
2𝑠 ) + 𝜆(2𝜋

4 ) = 0

This clearly yields that 𝑠 = 2𝑟 (because we have an equality constraint). Hence we get a
candidate maximizer when

2𝜋𝑟 + 8𝑟 = 𝐿 ⇒ (𝑟, 𝑠) = ( 𝐿
8 + 2𝜋,

𝐿
4 + 𝜋)

We now check the other two cases before returning to the second order conditions. If we
have that 𝑥 = 0, then the problem reduces to 𝑦 = 𝐿/4 and we get

( 0
𝐿/2) + 𝜆(2𝜋

4 ) + 𝜇1 (
1
0) = 0

We get then that this is a candidate for a maximizer. The other possibility is when 𝑠 = 0,
when would lead to a system

(𝐿
0) + 𝜆(2𝜋

4 ) + 𝜇2 (
0
1) = 0

This is the other candidate for a maximizer. Now, we look at the second order conditions.
Notice that because the constraints are all linear, they contribute nothing to the second
order conditions, so we must just check the Hessian of 𝐴. However, this matrix is clearly
positive definite:

∇2𝐴 = (2𝜋 0
0 2)

This means that if there are any feasible directions to check we are at a local minimum. So
the interior point is a local minimum. Considering the other points, we can see which is the
maximum directly by verifying numerically. (It is the point where 𝑠 = 0).

Exercise 5.5.5 (Equality Constraint Practice 1). Let 𝑄 by a symmetric 2× 2 matrix with
eigenvalues given by 𝜆1 ≤ 𝜆2. Moreover, the eigenvectors of 𝑄 are not 𝑒1, 𝑒2 ∈ ℝ2. Consider
the following problem:

min 𝑓(𝑥) ≔
⟨𝑥, 𝑥⟩𝑄

⟨𝑥, 𝑥⟩
subject to the constraint that 𝑥1𝑥2 ≠ 0, where 𝑥1, 𝑥2 are the coordinates of the vector
𝑥 ∈ ℝ2.

(a) Show that the problem is equivalent to the problem

min 𝑔(𝑥)deg ⟨𝑥, 𝑥⟩𝑄

subject to the constraints

⟨𝑥, 𝑥⟩ =1
𝑥1𝑥2 ≠0
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(b) Find the candidates for minimizers of the problem, and express the minimum value of
this problem in terms of the eigenvalues.

(c) What do the second order conditions say about the candidates that you found in part
(b)?

Solution. (a) We can see easily that 𝑓(𝑎𝑥) = 𝑓(𝑥). This is as all of the computations are
linear:

𝑓(𝑎𝑥) = (𝑎𝑥)𝑇𝑄(𝑎𝑥)
(𝑎𝑥)𝑇(𝑎𝑥) = 𝑎2

𝑎2
𝑥𝑇𝑄𝑥
𝑥𝑇𝑥

This means that 𝑓 is constant on all rays emanating from the origin. Hence, it is
sufficient to consider one representative from each ray. In this case, it is natural to
consider the unit circle, as here we have 𝑥𝑇𝑥 = 1, so that our function becomes 𝑔. (See
the attached picture)

(b) Consider that we can write

𝑔(𝑥) = (𝑥1 𝑥2)(
𝑎 𝑏
𝑏 𝑐)(𝑥1

𝑥2
)

= 𝑎𝑥2
1 + 𝑐𝑥2

2 + 2𝑏𝑥1𝑥2

Note that as 𝑒1, 𝑒2 are not the eigenvectors of 𝑄, we have that 𝑏 ≠ 0. Now, the
Lagrange multipliers for this (ignoring the constraint for now) yield that

∇𝑔 + 𝜆∇(𝑥2 + 𝑦2) = 0

−2𝜆(𝑥1
𝑥2

) = ∇𝑔

−2𝜆(𝑥1
𝑥2

) = 2(𝑎𝑥1 + 𝑏𝑥2
𝑏𝑥1 + 𝑐𝑥2

) = 2𝑄(𝑥1
𝑥2

)

Notice that this means exactly that the candidates for the extrema of this function on
the unit circle are those vectors 𝑥 for which 𝑄𝑥 is a scalar multiple of 𝑥. These are
exactly the eigenvectors (plus-minus the eigenvectors in fact).
Ignoring the constraint was not a problem: as 𝑒1, 𝑒2 are not eigenvectors they are not
candidates for a minimum even if we considered 𝑔 on all of 𝑆1. Hence, excluding them
will not affect which points are candidates.

(c) Now, we have that for an eigenvector 𝑣𝑖 with eigenvector 𝜆𝑖, the corresponding La-
grange multiplier is −𝜆𝑖. Hence, we have that

∇2𝑔 + 1
𝜆𝑖

∇2(𝑥2 + 𝑦2) = 2𝑄 − 2𝜆𝑖𝐼

This matrix has eigenvalues of 2(𝜆1 −𝜆𝑖) and 2(𝜆2 −𝜆𝑖). Notice that as this matrix is
symmetric, the two eigenvectors will be perpendicular. This means that the tangent
space at one of the eigenvectors is exactly the span of the other eigenvector. If 𝜆2 > 𝜆1,
then at 𝑣2 we have that 𝑣𝑇

1 (2𝑄 − 2𝜆2𝐼)𝑣1 = 2(𝜆1 − 𝜆2) < 0, so that this is not
a minimum. At 𝑣1, however, we would have 𝑣𝑇

2 (2𝑄 − 2𝜆1𝐼)𝑣2 = 2(𝜆2 − 𝜆1) > 0.
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This means that the matrix is positive definite on the tangent space, so that it is a
minimum. If the two eigenvalues are equal, then 𝑄 = 𝜆𝐼, contradicting that 𝑒𝑖 isn’t
an eigenvector. Hence we have 𝜆2 > 𝜆1, so that we have our minimum achieved at
exactly ±𝑣1.

Exercise 5.5.6 (Some other maximization problems). (a)

max𝑓(𝑥, 𝑦) = (𝑥2 − 2𝑦2)𝑒−(𝑥2+𝑦2) min 𝑓(𝑥, 𝑦) = (𝑥2 − 2𝑦2)𝑒−(𝑥2+𝑦2)

(b)

max𝑥1/2 + 𝑏𝑦1/2

subject to

𝑥 + 𝑦 ≤ 𝑐

(c)

max𝑥2 + 𝑏𝑦2

subject to

𝑥 + 𝑦 ≤ 𝑐
𝑥 ≥ 0
𝑦 ≥ 0

Look at the correspondence.

Review Session 2
Exercise 5.5.7. Show that almost sure convergence does not imply convergence in ℒ𝑝.

Solution. I give two examples, both of which capture the same idea. Basically, almost sure
convergence deals with the probability that we differ at all for each 𝜔. It doesn’t care about
by how much we differ. ℒ𝑝 convergence, on the other hand, is a measure of how much, on
average, we differ from the limit distribution 𝑋.

The first example highlights this with a story. Suppose you start in time period 1 with
$1. Each future time period, you flip a (fair) coin. If it lands on heads, you triple the
amount of money that you have. If it lands on tails, then you lose everything, and in every
future period you get nothing.

Let 𝑋𝑛 be the amount of money in period 𝑛.
We have that 𝑋𝑛 →𝑎.𝑠 𝑋 ≡ 0. To see this, we can see that the events 𝐸𝑛 such that

𝑋𝑛 > 0 have the property that 𝐸𝑛 ⊆ 𝐸𝑚 for 𝑚 ≤ 𝑛. So then, we have that

ℙ [ lim𝑛→∞ sup𝑋𝑛 = 0] = ℙ [ lim𝑛→∞𝐸𝑛 = 0] = 1

As ∩𝐸𝑛 = (1, ..., 1, ...) which has probability zero.
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However, notice that 𝔼[𝑋𝑛] = ( 3
2)

𝑛 → ∞, so this does not converge in 𝐿𝑝 for any 𝑝 ≥ 1.
The second example is more mathematical in foundation, and it emphasizes perhaps

more clearly the mechanisms. Let Ω = [0, 1], endowed with the standard Lebesgue measure.
Then, define

𝑋𝑛(𝜔) = 𝑛2𝟙{𝜔 ≤ 1
𝑛}

Then, we have that

ℙ [ lim𝑛→∞ sup𝑋𝑛 = 0] = 𝜆((0, 1]) = 1

But, we have that

𝔼[𝑋𝑛] = 𝑛 → ∞

so again, we do not converge in ℒ𝑝.

Exercise 5.5.8. Show that convergence in ℒ𝑝 does not imply converge almost surely.

Solution. This highlights the exact reverse of the above, as we will see. Let Ω = [0, 1]
endowed with the standard Lebesgue measure 𝜆. Then, define a “typewriter” sequence

𝑋1(𝜔) ≔ 𝟙{𝜔 ∈ [0, 1]}
𝑋2(𝜔) ≔ 𝟙{𝜔 ∈ [0, 1/2]}
𝑋3(𝜔) ≔ 𝟙{𝜔 ∈ [1/2, 1]}
𝑋4(𝜔) ≔ 𝟙{𝜔 ∈ [0, 1/3]}

⋮

Then, notice that for each 𝜔 ∈ [0, 1], infinitely many 𝑋𝑛 have 𝑋𝑛(𝜔) = 1. This means that

ℙ [ lim𝑛→∞ sup𝑋𝑛 = 0] = 𝜆(∅) = 0

However, notice that if the length of the interval is 1/𝑚, then its 𝑝-norm will be 1/𝑚1/𝑝.
This will clearly go to 0, and so will converge in ℒ𝑝 for any 𝑝 > 0.

Exercise 5.5.9. Go through some of the examples of transforming random variables.

Solution. Suppose that 𝑋 is a random variable, and 𝑔 ∶ ℝ → ℝ is a monotonically increasing
function.

Define 𝑌 = 𝑔(𝑋). Because 𝑔 is monotonically increasing, we have that it has an inverse
𝑣: 𝑋 = 𝑣(𝑌 ). We can then write

𝐹𝑌(𝑦) = 𝐹𝑋(𝑣(𝑦))

This comes just from writing this clearly. If 𝑋 is continuous, and 𝑔 is differentiable, then
we also get

𝑓𝑌(𝑦) = 𝑣′(𝑦)𝑓𝑋(𝑣(𝑦))

just from an immediate application of the chain rule.
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If 𝑔 is not monotonic, then we have to be a little bit more careful. For example, consider
what happens when 𝑔 = 𝑥2. there are two inverses, and we need to be careful about the
range.

Now, suppose that we have a joint distribution of 𝑋,𝑌, and a transformation of

𝑈 =𝑔1(𝑋, 𝑌 )
𝑉 =𝑔2(𝑋, 𝑌 )

Now, suppose that we can invert uniquely these 𝑔1, 𝑔2. That is, there exists an ℎ1, ℎ2 such
that if 𝑈, 𝑉 are above, we have

𝑋 =ℎ1(𝑈, 𝑉 )
𝑌 =ℎ2(𝑈, 𝑉 )

Then, we have that, similar to the example of the above (just by a knowledge of higher-
dimension change of variable):

𝑓𝑈,𝑉(𝑢, 𝑣) = ∣det(ℎ(𝑢, 𝑣))∣𝑓𝑋,𝑌 (ℎ1(𝑢, 𝑣), ℎ2(𝑢, 𝑣))

For example, suppose that 𝑈 = 𝑋 − 𝑌 and 𝑉 = 𝑋 + 𝑌. Then, we have that

𝑋 = 1
2(𝑈 + 𝑉 )

𝑌 = 1
2(𝑉 − 𝑈)

So, we have that

𝑓𝑈,𝑉(𝑢, 𝑣) =
1
2𝑓𝑋,𝑌 (𝑢 + 𝑣, 𝑣 − 𝑢)

Exercise 5.5.10. Should also talk about the conditional density, and the marginal density,
and how these relate to the Ω ideas, right?
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Chapter 6

Selected Solutions

6.2 Solutions to Optimization Exercises
Solution. 5.2.3

(a) The first order condition is that ∇𝑓𝛼 = (0
0), this is because any possible minimum is

an interior point. Hence we compute the partial derivatives (𝑓𝛼 is 𝐶∞) and set them
to zero.

𝜕𝑓𝛼
𝜕𝑥 = 2𝑥(𝛼 + 1) + 2𝑦

𝜕𝑓𝛼
𝜕𝑦 = 2𝑦𝛼 + 2𝑥 + 7

From the second equation, at a local minimum we must have that 𝑥∗ = − 7+2𝑦𝛼
2 .

Plugging this into the first equation, we must have that −(𝛼+1)(2𝑦∗𝛼+7)+2𝑦∗ = 0.
This yields 𝑦∗ = − 7𝛼+7

2𝛼2+2𝛼−2 . Subbing this value for 𝑥 yields 𝑥∗ = 7
2𝛼2+2𝛼−2 .

(b) We must have, for any vector 𝑑 = (𝑑1
𝑑2

), that 𝑑𝑇∇2𝑓𝛼(𝑥∗, 𝑦∗)𝑑 ≥ 0. That is, we

need the eigenvalues of ∇2𝑓𝛼(𝑥∗, 𝑦∗) to be non-negative (i.e., that it is positive semi-
definite).
We can compute the Hessian of 𝑓𝛼 as:

∇2𝑓𝛼 = (2(𝛼 + 1) 2
2 2𝛼)

Now, after dividing each entry of the polynomial by 2 (which will clearly not change
the sign of the eigenvalues), the characteristic polynomial of this new matrix is given
by 𝑝(𝑡) = 𝛼(𝛼 + 1)𝑡2 + (2𝛼 + 1)𝑡 + 1. The roots of this polynomial correspond to the
eigenvalues of the matrix, and are given by

𝛼 + 1
2 ±

√
5
2

For these to both be non-negative we must have that 𝛼 ≥ 1
2 (
√
5 − 1). Note, this can

also be seen by looking at the determinants of the principal minors, as discussed in
class.
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(c) Similarly to above, we need that the eigenvalues of the matrix are strictly positive. In
order to achieve this, we must have that 𝛼 > 1

2 (
√
5 − 1).

(d) We take the hint, to complete the square. Let 𝑄 = ∇2𝑓𝛼(𝑥∗, 𝑦∗), and notice that

𝑄−1 = 1
2𝛼(𝛼 + 1) − 2 ( 𝛼 −1

−1 𝛼 + 1)

Notice as well that (𝑥∗

𝑦∗) = 𝑄−1 (0
7). From these together we can write, for 𝛼 >

1
2 (
√
5 − 1) that

𝑓𝛼(𝑥, 𝑦) =
1
2 (𝑥 − 𝑥∗

𝑦 − 𝑦∗)
𝑇

𝑄(𝑥 − 𝑥∗

𝑦 − 𝑦∗)− 1
2 (𝑥∗

𝑦∗)
𝑇

𝑄(𝑥∗

𝑦∗)

As 𝑄 is positive definite, we know that the first term is positive whenever (𝑥 − 𝑥∗

𝑦 − 𝑦∗) ≠

(0
0). Hence, the local minimums that we identified will be global minimums. This is

exactly as we have discussed in class.

Solution. 5.2.4

(a) “Regular” points are exactly those points for which ℎ(𝑥, 𝑦, 𝑧) = 0 and ∇ℎ(𝑥, 𝑦, 𝑧) ≠ 0.
These are the full-rank points. Now, we can compute

∇ℎ(𝑥, 𝑦, 𝑧) =

⎛⎜
⎝

2(𝑥 + 𝑦 − 𝑧)(𝑥 + 𝑧)2(𝑥 − 2𝑦) + 2(𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)(𝑥 − 2𝑦) + (𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)2

2(𝑥 + 𝑦 − 𝑧)(𝑥 + 𝑧)2(𝑥 − 2𝑦) − 2(𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)2

−2(𝑥 + 𝑦 − 𝑧)(𝑥 + 𝑧)2(𝑥 − 2𝑦) + 2(𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)(𝑥 − 2𝑦)
⎞⎟
⎠

I characterize those points where this gradient is zero, the feasible regular points will
then be all of the other points. Note that as ℎ(𝑥, 𝑦, 𝑧) = 0, we have that (𝑥 + 𝑦 −
𝑧)(𝑥+𝑧)(𝑥−2𝑦) = 0. Hence at any feasible point we have that the gradient looks like

∇ℎ(𝑥, 𝑦, 𝑧) = ⎛⎜
⎝

(𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)2

−2(𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)2

0
⎞⎟
⎠

Hence, the regular points are those feasible points such that 𝑥 = 2𝑦 and have (𝑥+𝑦−
𝑧)(𝑥 + 𝑧) ≠ 0, that is have 𝑧 ≠ 3𝑦,−2𝑦.

(b) As we know, the candidates for the minimizer will have ∇𝑓 = 𝜆∇ℎ, and will have
(𝑥, 𝑦, 𝑧) be a regular point.
Now, we have that

∇𝑓(𝑥, 𝑦, 𝑧) = ⎛⎜
⎝

2(𝑥 − 𝑦
3 ) +

1
2 (𝑧 + 𝑥)

2(𝑥 − 𝑦
3 )

1
2 (𝑧 + 𝑥) + 2𝑧

⎞⎟
⎠

= ⎛⎜
⎝

5
2𝑥 − 2

3𝑦 + 1
2𝑧

2(𝑥 − 𝑦
3 )

5
2𝑧 + 1

2𝑥
⎞⎟
⎠
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Now, setting this equal to 𝜆∇ℎ, we have that
5
2𝑥 − 2

3𝑦 + 1
2𝑧 = 𝜆(𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)2

−(𝑥 − 𝑦
3) = 𝜆(𝑥 + 𝑦 − 𝑧)2(𝑥 + 𝑧)2

𝑥 = −5𝑧

Now, as 𝑥 = 2𝑦 (as we can apply Lagrange multipliers only at regular points), we have
that 𝑧 = −2

5 𝑦 and hence

5𝑦 − 2
3𝑦 − 1

5𝑦 = −2𝑦 + 1
3𝑦

𝑦 = 0

Hence we also have that 𝑥 = 0, 𝑧 = 0. Note that this is not a regular point! However,
it does mean that we have no regular point candidates for minimums. (0, 0, 0) is in
fact the global minimum. This is because 𝑓(0, 0, 0) = −2022, and we can only have
𝑥 = 1

3𝑦, 𝑥 = −𝑧 and 𝑧 = 0 when all three are zero. This completes the question.

Solution. 5.2.7 We first find the points on the ellipse that are the farthest from the origin.
From there we argue that for their tangents, they are closest to the origin. This will prove
the claim.

Solution. 5.2.8 This is a problem where one needs to be slightly smart about ruling out
corner cases on the constraint 𝑥𝑖 ≥ 0. Note that we can clearly not have a maximum when
𝑥𝑗 = 𝑐 or 𝑥𝑗 = 0, because then the product will be zero. Then, we must have that for each
𝑗 = 1, ..., 𝑛 that

∏
𝑖≠𝑗

𝑥𝑖 + 𝜆 = 0

In particular, because no 𝑥𝑖 = 0 (this is why it was important to rule out that case, apart
from making that multiplier zero by complementary slackness), we have that

𝑥𝑗1
= −𝜆

∏𝑖≠𝑗1,𝑗2
𝑥𝑖

= 𝑥𝑗2

This means that all of the 𝑥𝑖 are equal, so that we have that 𝑥1 = 𝑐/𝑛, and hence,

𝑥1 ⋅ ... ⋅ 𝑥𝑛 ≤ ( 𝑐
𝑛)

𝑛
⇒ (𝑥1 ⋅ ... ⋅ 𝑥𝑛)

1/𝑛 ≤ 𝑐
𝑛

This finished the problem.

Solution. 5.2.9

(a) Notice that if we are devoting a certain length of fencing to the regular pen, then we
need to have that it is a square, as this will maximize the area given any amount of
fencing. The problem then becomes:

max𝜋𝑥2+𝑦2

s.t.2𝜋𝑥+4𝑦 = 𝐿
0 ≤ 𝑥,𝑦 ≤ 𝐿
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(b) We can see this clearly as a standard optimization problem with inequality constraints.
We have, at a regular point solution, we have

(2𝜋𝑥
2𝑦 ) + 𝜆(2𝜋

4 ) + 𝜇1 (
1
0) + 𝜇2 (

0
1) = 0

with 𝜇1𝑥 = 𝜇2𝑦 = 0. Now, if we have 𝜇1 ≠ 0, we have 𝑥 = 0, 𝑦 = 𝐿
4 and 𝐴 = 𝐿2

16 .
Similarly, if 𝜇2 ≠ 0, we have 𝑥 = 𝐿

2𝜋 , so that 𝐴 = 𝐿2

4𝜋 . Now, if 𝜇1 = 𝜇2 = 0, we have

𝑥 = 𝜆 𝑦 = 2𝜆

Hence, we have that 2𝑥 = 𝑦, so that 2𝜋𝑥+8𝑥 = 𝐿 and so 𝑥 = 𝐿
8+2𝜋 and 𝑦 = 𝐿

4+𝜋 . Now,
in order to see if this is a maximum, we would need that ∇2𝐴 is negative semi-definite.

However, notice that ∇2𝐴 = (2𝜋 0
0 2) which is positive definite, and hence this is a

minimum, and not a maximum. Hence, the maximum occurs at 𝑦 = 0 and 𝑥 = 𝐿
2𝜋 ,

with 𝐴 = 𝐿2

4𝜋 .

(c) We can see easily that 𝑦 = 1
4 (𝐿 − 2𝜋𝑥). From here, we have that

𝐴(𝑥, 𝑦) = 𝜋𝑥2 + 1
16 (𝐿 − 2𝜋𝑥)2

𝐴′(𝑥) = 2𝜋𝑥 − 𝜋
4 (𝐿 − 2𝜋𝑥)

Setting this derivative equal to zero, we find that

(2 + 𝜋
2 )𝑥 = 1

4𝐿

𝑥 = 1
8 + 2𝜋𝐿

Which is as above. However, in this case we have 𝐴″ > 0, so that our point here is a
minimum (as above). Hence, we must check the two extreme values 𝑥 = 0 or 𝑥 = 𝐿

2𝜋 .
This computation is exactly as in part (b), completing the question.

6.3 Solutions to Measure Theory Exercises
Solution. 5.3.2 Now, if 𝐶 is empty then the claim is obvious. Consider then that if 𝐶 is non-
empty we have that the function 𝐷 ∶ ℝ𝑛 → ℝ given by 𝐷(𝑥) = 𝑑(𝑥,𝐶) = min{𝑑(𝑥, 𝑐), 𝑐 ∈
𝐶} (the minimum is achieved as 𝐶 is closed) is well-defined and continuous. Then, consider
the family of sets 𝑈𝑛 = 𝐷−1(−1, 1/𝑛). All of the 𝑈𝑛 are open by the continuity of 𝐷, and
hence we have that the intersection of all of the 𝑈𝑛 is 𝐶, as every point not in 𝐶 is at least
some positive distance away from 𝐶. Hence, we have that every closed set is 𝐺𝛿. The other
claim does follow immediately, for if 𝑈 is open, and 𝐶 = 𝑈𝑐, then 𝐶 = ⋂𝑈𝑛 means that
𝑈 = ⋃𝑈𝑐

𝑛, where all of these are closed. Hence both claims are proved.

6.4 Solutions to Probability Theory Exercises
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